N-soliton solutions to the multi-component nonlocal Gerdjikov-Ivanov equation via Riemann-Hilbert problem with zero boundary conditions

被引:11
|
作者
Zhang, Yong [1 ,2 ]
Dong, Huan-He [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
基金
中国国家自然科学基金;
关键词
Nonlocal Gerdjikov-Ivanov equation; Eigenvalue problem; Riemann-Hilbert problem; N-soliton solution; NONLINEAR SCHRODINGER-EQUATION; TRANSFORMATION; WAVES;
D O I
10.1016/j.aml.2021.107770
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on zero curvature equation, the multi-component nonlocal reverse-time Gerdjikov-Ivanov (GI) equation is derived through nonlocal group reduction of the multi-component GI equation. Then the soliton solutions of this new multi-component nonlocal reverse-time GI equation are given with the aid of the corresponding Riemann-Hilbert problem. Especially, under the reflectless case, the N-soliton solutions of this nonlocal system are gained with a pure algebraic method, conversely, if the jump is not an identity, the solutions can only be determined by the Sokhotski-Plemelj formula. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The Soliton Solutions for Nonlocal Multi-Component Higher-Order Gerdjikov-Ivanov Equation via Riemann-Hilbert Problem
    Liu, Jinshan
    Dong, Huanhe
    Fang, Yong
    Zhang, Yong
    FRACTAL AND FRACTIONAL, 2024, 8 (03)
  • [2] Hierarchical structure and N-soliton solutions of the generalized Gerdjikov-Ivanov equation via Riemann-Hilbert problem
    Zheng, Wanguang
    Liu, Yaqing
    NONLINEAR DYNAMICS, 2024, : 12021 - 12035
  • [3] General N-soliton solutions to the two types of nonlocal Gerdjikov-Ivanov equations via Riemann-Hilbert problem
    Yang, Yingmin
    Xia, Tiecheng
    Liu, Tongshuai
    PHYSICA SCRIPTA, 2023, 98 (05)
  • [4] Multi-component Gerdjikov-Ivanov system and its Riemann-Hilbert problem under zero boundary conditions
    Zhang, Yong
    Dong, Huan-He
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 60
  • [5] Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation
    Zhang, Yongshuai
    Cheng, Yi
    He, Jingsong
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2017, 24 (02) : 210 - 223
  • [6] Riemann-Hilbert approach for the combined nonlinear Schrodinger and Gerdjikov-Ivanov equation and its N-soliton solutions
    Nie, Hui
    Lu, Liping
    Geng, Xianguo
    MODERN PHYSICS LETTERS B, 2018, 32 (07):
  • [7] Multi-component generalized Gerdjikov-Ivanov integrable hierarchy and its Riemann-Hilbert problem
    Liu, Tongshuai
    Xia, Tiecheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 68
  • [8] Riemann—Hilbert method and N—soliton for two—component Gerdjikov-Ivanov equation
    Yongshuai Zhang
    Yi Cheng
    Jingsong He
    Journal of Nonlinear Mathematical Physics, 2017, 24 : 210 - 223
  • [9] The Riemann-Hilbert approach for the higher-order Gerdjikov-Ivanov equation, soliton interactions and position shift
    Zou, Zhifu
    Guo, Rui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 124
  • [10] N-SOLITON SOLUTIONS FOR A NONLINEAR WAVE EQUATION VIA RIEMANN-HILBERT APPROACH
    Nie, Hui
    Lu, Liping
    ACTA PHYSICA POLONICA B, 2019, 50 (04): : 793 - 811