A validation of QDAcity-RE for domain modeling using qualitative data analysis

被引:1
|
作者
Kaufmann, Andreas [1 ]
Krause, Julia [1 ]
Harutyunyan, Nikolay [1 ]
Barcomb, Ann [1 ,2 ]
Riehle, Dirk [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Comp Sci, Martensstr 3, D-91058 Erlangen, Germany
[2] Univ Calgary, Elect & Software Engn Schulich Sch Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
关键词
Domain model; Domain modeling; Qualitative data analysis; Requirements engineering; Controlled experiment; REQUIREMENTS; CONSISTENCY;
D O I
10.1007/s00766-021-00360-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using qualitative data analysis (QDA) to perform domain analysis and modeling has shown great promise. Yet, the evaluation of such approaches has been limited to single-case case studies. While these exploratory cases are valuable for an initial assessment, the evaluation of the efficacy of QDA to solve the suggested problems is restricted by the common single-case case study research design. Using our own method, called QDAcity-RE, as the example, we present an in-depth empirical evaluation of employing qualitative data analysis for domain modeling using a controlled experiment design. Our controlled experiment shows that the QDA-based method leads to a deeper and richer set of domain concepts discovered from the data, while also being more time efficient than the control group using a comparable non-QDA-based method with the same level of traceability.
引用
收藏
页码:31 / 51
页数:21
相关论文
共 50 条
  • [31] Code Integration, Data Verification, and Models Validation Using the ITER Integrated Modeling and Analysis System (IMAS) in EUROfusion
    Romanelli, M.
    Coelho, R.
    Coster, D.
    Ferreira, J.
    Fleury, L.
    Henderson, S.
    Hollocombe, J.
    Imbeaux, F.
    Jonsson, T.
    Kogan, L.
    Meneghini, O.
    Merle, A.
    Pinches, S. D.
    Sauter, O.
    Tardini, G.
    Yadykin, D.
    Smith, S.
    Strand, P.
    FUSION SCIENCE AND TECHNOLOGY, 2020, 76 (08) : 894 - 900
  • [32] Modeling the combined effect of nutrients and pyrene on the plankton population: Validation using mesocosm experiment data and scenario analysis
    Dueri, S.
    Dahllof, I.
    Hjorth, M.
    Marinov, D.
    Zaldivar, J. M.
    ECOLOGICAL MODELLING, 2009, 220 (17) : 2060 - 2067
  • [33] Using Computer-assisted Qualitative Data Analysis Software (CAQDAS) to Re-examine Traditionally Analyzed Data: Expanding our Understanding of the Data and of Ourselves as Scholars
    Rademaker, Linnea L.
    Grace, Elizabeth J.
    Curda, Stephen K.
    QUALITATIVE REPORT, 2012, 17 (22)
  • [34] Using natural language processing technology for qualitative data analysis
    Crowston, Kevin
    Allen, Eileen E.
    Heckman, Robert
    INTERNATIONAL JOURNAL OF SOCIAL RESEARCH METHODOLOGY, 2012, 15 (06) : 523 - 543
  • [35] Beyond Constant Comparison Qualitative Data Analysis: Using NVivo
    Leech, Nancy L.
    Onwuegbuzie, Anthony J.
    SCHOOL PSYCHOLOGY QUARTERLY, 2011, 26 (01) : 70 - 84
  • [36] Our data, ourselves: a framework for using emotion in qualitative analysis
    Lustick, Hilary
    INTERNATIONAL JOURNAL OF QUALITATIVE STUDIES IN EDUCATION, 2021, 34 (04) : 353 - 366
  • [37] Qualitative Analysis of Synthetic Computer Network Data Using UMAP
    Zingo, Pasquale A. T.
    Novocin, Andrew P.
    ADVANCES IN INFORMATION AND COMMUNICATION, FICC, VOL 2, 2023, 652 : 849 - 861
  • [38] Economic analysis of tenure in East anglia using qualitative data
    Vaze, P
    JOURNAL OF AGRICULTURAL ECONOMICS, 1998, 49 (03) : 443 - 457
  • [39] Using Video Editing Software as a Qualitative Data Analysis Tool
    Boschman, Lorna
    INTERNATIONAL JOURNAL OF QUALITATIVE METHODS, 2013, 12 : 749 - 750
  • [40] Design Thinking Using Qualitative Data Analysis and Machine Learning
    Hanan, Moussa
    Galal, Galal-Edeen H.
    13TH INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND MANAGEMENT, ICICM 2023, 2023, : 40 - 47