Uniformly continuous superposition operators in the space of bounded variation functions

被引:9
|
作者
Matkowski, Janusz [1 ,2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, PL-65246 Zielona Gora, Poland
[2] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
关键词
Superposition operator; Lipschitzian operator; uniformly continuous operator; bounded variation function;
D O I
10.1002/mana.200710126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I, J subset of R be intervals. The main result says that if a superposition operator H generated by a function of two variables h : I x J -> R, H(phi)(x) := h(x, phi(x)), maps the set BV(I, J) of all bounded variation functions phi : I -> J into the Banach space BV(I, R) and is uniformly continuous with respect to the BV-norm, then h(x, y) = a(x)y + b(x), x is an element of I, y is an element of J, for some a, b is an element of BV(I, R). (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1060 / 1064
页数:5
相关论文
共 50 条