Nonperturbative approach for a time-dependent quantum mechanical system

被引:2
|
作者
Kim, HC [1 ]
Yee, JH [1 ]
机构
[1] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea
来源
PHYSICAL REVIEW D | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevD.69.025003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a variational method which uses a quartic exponential function as a trial wave function to describe time-dependent quantum mechanical systems. We introduce a new physical variable y which is appropriate to describe the shape of a wave packet, and calculate the effective action as a function of both the dispersion root<(q) over cap (2)> and y. The effective potential successfully describes the transition of the system from the false vacuum to the true vacuum. The present method well describes the time evolution of the wave function of the system for a short period for the quantum roll problem and describes the long-time evolution up to 75% accuracy. These are shown in comparison with direct numerical computations of the wave function. We briefly discuss the large N behavior of the present approximation.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] NONPERTURBATIVE TIME-DEPENDENT THEORY OF HELIUM IN A STRONG LASER FIELD
    TANG, X
    RUDOLPH, H
    LAMBROPOULOS, P
    PHYSICAL REVIEW A, 1991, 44 (11): : R6994 - R6997
  • [32] EXACT TIME-DEPENDENT QUANTUM-MECHANICAL DISSOCIATION DYNAMICS OF I2HE - COMPARISON OF EXACT TIME-DEPENDENT QUANTUM CALCULATION WITH THE QUANTUM TIME-DEPENDENT SELF-CONSISTENT (TDSCF) APPROXIMATION
    BISSELING, RH
    KOSLOFF, R
    GERBER, RB
    RATNER, MA
    GIBSON, L
    CERJAN, C
    JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (05): : 2760 - 2765
  • [33] TIME-DEPENDENT VARIATIONAL APPROACH TO SOLITONS IN THE QUANTUM TODA CHAIN
    Gohmann, F
    MERTENS, FG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (03): : 649 - 655
  • [34] A computational approach to quantum noise in time-dependent nanoelectronic devices
    Gaury, Benoit
    Waintal, Xavier
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 75 : 72 - 76
  • [35] Time-dependent Kohn-Sham approach to quantum electrodynamics
    Ruggenthaler, M.
    Mackenroth, F.
    Bauer, D.
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [36] Quantum effective force and Bohmian approach to time-dependent traps
    Mousavi, S. V.
    PHYSICA SCRIPTA, 2014, 89 (06)
  • [37] Time-dependent approach to electron pumping in open quantum systems
    Stefanucci, G.
    Kurth, S.
    Rubio, A.
    Gross, E. K. U.
    PHYSICAL REVIEW B, 2008, 77 (07)
  • [38] STATISTICAL-MECHANICAL APPROACH TO TIME-DEPENDENT RHEOLOGICAL BEHAVIOR
    ZIABICKI, A
    JOURNAL OF RHEOLOGY, 1980, 24 (06) : 933 - 934
  • [39] Time-dependent quantum graph
    Matrasulov, D. U.
    Yusupov, J. R.
    Sabirov, K. K.
    Sobirov, Z. A.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (02): : 173 - 181
  • [40] TIME-DEPENDENT QUANTUM BILLIARDS
    Schmelcher, P.
    Lenz, F.
    Matrasulov, D.
    Sobirov, Z. A.
    Avazbaev, S. K.
    COMPLEX PHENOMENA IN NANOSCALE SYSTEMS, 2009, : 81 - +