Stable stationary solitons of the one-dimensional modified complex Ginzburg-Landau equation

被引:0
|
作者
Hong, Woo-Pyo [1 ]
机构
[1] Catholic Univ Daegu, Dept Elect Engn, Gyungbuk 712702, South Korea
关键词
one-dimensional modified complex Ginzburg-Landau equation; existence condition of stationary solitons; numerical simulation;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on the existence of a new family of stable stationary solitons of the one-dimensional modified complex Ginzburg-Landau equation. By applying the paraxial ray approximation, we obtain the relation between the width and the peak amplitude of the stationary soliton in terms of the model parameters. We verify the analytical results by direct numerical simulations and show the stability of the stationary solitons.
引用
收藏
页码:368 / 372
页数:5
相关论文
共 50 条
  • [21] Optical solitons with complex Ginzburg-Landau equation
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Eslami, Mostafa
    Zhou, Qin
    Kara, Abdul H.
    Milovic, Daniela
    Majid, Fayequa B.
    Biswas, Anjan
    Belic, Milivoj
    NONLINEAR DYNAMICS, 2016, 85 (03) : 1979 - 2016
  • [22] Hole-defect chaos in the one-dimensional complex Ginzburg-Landau equation
    Howard, M
    van Hecke, M
    PHYSICAL REVIEW E, 2003, 68 (02):
  • [23] Optical solitons with complex Ginzburg-Landau equation by modified simple equation method
    Arnous, Ahmed H.
    Seadawy, Aly R.
    Alqahtani, Rubayyi T.
    Biswas, Anjan
    OPTIK, 2017, 144 : 475 - 480
  • [24] SPACE AND TIME INTERMITTENCY BEHAVIOR OF A ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION
    GIL, L
    NONLINEARITY, 1991, 4 (04) : 1213 - 1222
  • [25] EXACT-SOLUTIONS OF THE ONE-DIMENSIONAL QUINTIC COMPLEX GINZBURG-LANDAU EQUATION
    MARCQ, P
    CHATE, H
    CONTE, R
    PHYSICA D, 1994, 73 (04): : 305 - 317
  • [27] STABILITY OF PHASE-SINGULAR SOLUTIONS TO THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION
    SASA, S
    IWAMOTO, T
    PHYSICS LETTERS A, 1993, 175 (05) : 289 - 294
  • [28] Secondary structures in a one-dimensional complex Ginzburg-Landau equation with homogeneous boundary conditions
    Nana, Laurent
    Ezersky, Alexander B.
    Mutabazi, Innocent
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2107): : 2251 - 2265
  • [29] Modulated amplitude waves and defect formation in the one-dimensional complex Ginzburg-Landau equation
    Brusch, L
    Torcini, A
    van Hecke, M
    Zimmermann, MG
    Bär, M
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 160 (3-4) : 127 - 148
  • [30] Scaling regimes of the one-dimensional phase turbulence in the deterministic complex Ginzburg-Landau equation
    Vercesi, Francesco
    Poirier, Susie
    Minguzzi, Anna
    Canet, Leonie
    PHYSICAL REVIEW E, 2024, 109 (06)