Strict p-negative type of a metric space

被引:20
|
作者
Li, Hanfeng [2 ]
Weston, Anthony [1 ]
机构
[1] Canisius Coll, Dept Math & Stat, Buffalo, NY 14208 USA
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
关键词
Finite metric spaces; Strict p-negative type; Generalized roundness; HILBERT-SPACE; GENERALIZED ROUNDNESS; EMBEDDINGS;
D O I
10.1007/s11117-009-0035-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Doust and Weston (J Funct Anal 254:2336-2364, 2008) have introduced a new method called enhanced negative type for calculating a non-trivial lower bound P(T)on the supremal strict p-negative type of any given finite metric tree (T, d). In the context of finite metric trees any such lower bound P(T) > 1 is deemed to be non-trivial. In this paper we refine the technique of enhanced negative type and show how it may be applied more generally to any finite metric space (X, d) that is known to have strict p-negative type for some p a parts per thousand yen 0. This allows us to significantly improve the lower bounds on the supremal strict p-negative type of finite metric trees that were given in Doust and Weston (J Funct Anal 254:2336-2364, 2008, Corollary 5.5) and, moreover, leads in to one of our main results: the supremal p-negative type of a finite metric space cannot be strict. By way of application we are then able to exhibit large classes of finite metric spaces (such as finite isometric subspaces of Hadamard manifolds) that must have strict p-negative type for some p > 1. We also show that if a metric space (finite or otherwise) has p-negative type for some p > 0, then it must have strict q-negative type for all q is an element of [0, p). This generalizes Schoenberg (Ann Math 38:787-793, 1937, Theorem 2) and leads to a complete classification of the intervals on which a metric space may have strict p-negative type.
引用
收藏
页码:529 / 545
页数:17
相关论文
共 50 条
  • [12] ON STRICT METRICITY IN METRIC SPACES
    ELLIS, DO
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (02) : 144 - 144
  • [13] Martingales of Random Subsets of a Metric Space of Negative Curvature
    Wojciech Herer
    Set-Valued Analysis, 1997, 5 : 147 - 157
  • [14] Martingales of random subsets of a metric space of negative curvature
    Herer, W
    SET-VALUED ANALYSIS, 1997, 5 (02): : 147 - 157
  • [15] Finite metric spaces of strictly negative type
    Hjorth, P
    Lisonek, P
    Markvorsen, S
    Thomassen, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 270 : 255 - 273
  • [16] Enhanced negative type for finite metric trees
    Doust, Ian
    Weston, Anthony
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (09) : 2336 - 2364
  • [17] Finite metric spaces of strictly negative type
    Hjorth, Poul
    Lisonek, Petr
    Markvorsen, Steen
    Thomassen, Carsten
    Linear Algebra and Its Applications, 1998, 270 (1-3): : 255 - 273
  • [18] Suzuki Type Common Fixed Point Theorem in Complete Metric Space and Partial Metric Space
    Choudhury, Binayak S.
    Bandyopadhyay, Chaitali
    FILOMAT, 2015, 29 (06) : 1377 - 1387
  • [19] A metric space for Type Ia supernova spectra
    Sasdelli, Michele
    Hillebrandt, W.
    Aldering, G.
    Antilogus, P.
    Aragon, C.
    Bailey, S.
    Baltay, C.
    Benitez-Herrera, S.
    Bongard, S.
    Buton, C.
    Canto, A.
    Cellier-Holzem, F.
    Chen, J.
    Childress, M.
    Chotard, N.
    Copin, Y.
    Fakhouri, H. K.
    Feindt, U.
    Fink, M.
    Fleury, M.
    Fouchez, D.
    Gangler, E.
    Guy, J.
    Ishida, E. E. O.
    Kim, A. G.
    Kowalski, M.
    Kromer, M.
    Lombardo, S.
    Mazzali, P. A.
    Nordin, J.
    Pain, R.
    Pecontal, E.
    Pereira, R.
    Perlmutter, S.
    Rabinowitz, D.
    Rigault, M.
    Runge, K.
    Saunders, C.
    Scalzo, R.
    Smadja, G.
    Suzuki, N.
    Tao, C.
    Taubenberger, S.
    Thomas, R. C.
    Tilquin, A.
    Weaver, B. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 447 (02) : 1247 - 1266