Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation

被引:164
|
作者
Yin, An [1 ,2 ,3 ]
Taylor, Michael H. [4 ]
机构
[1] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[3] China Univ Geosci Beijing, Struct Geol Grp, Beijing 100085, Peoples R China
[4] Univ Kansas, Dept Geol, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
INDIA-ASIA COLLISION; METAMORPHIC CORE COMPLEXES; EAST-WEST EXTENSION; RIGHT-LATERAL SHEAR; LOWER CRUSTAL FLOW; TIBETAN PLATEAU; TECTONIC EVOLUTION; SOUTHERN TIBET; GARLOCK FAULT; SEISMIC ANISOTROPY;
D O I
10.1130/B30159.1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
V-shaped conjugate strike-slip faults occur widely on Earth, Venus, and Mars in the solar system. They commonly lie at 60 degrees-75 degrees in map view from the maximum compressive stress (sigma(1)) direction. This fault pattern cannot be explained directly by the Coulomb fracture criterion, which predicts the formation of X-shaped shear fractures at 30 degrees from the sigma(1) direction. Possible explanations of this odd fault geometry include rotation of early formed Coulomb fractures or reactivation of preexisting weakness. Here, we show that none of these mechanisms is feasible for the formation of a late Cenozoic conjugate strikeslip fault system in central Tibet. Instead, its initiation can be best explained by distributed deformation during the formation of two parallel and adjoining shear zones that have opposing senses of shear. Our suggestion is based on the current global positioning system (GPS) velocity field in Tibet, which can be divided into two east-trending shear zones: a northern left-slip zone consisting of active ENE-striking left-slip faults, and a southern right-slip zone consisting of active WNW-striking right-slip faults. The correlation between the GPS strain field and the fault pattern suggests that the central Tibet conjugate faults may have initiated as two sets of Riedel shears in the two parallel but separate shear zones. Because the two east-trending shear zones also experience north-south contraction, we refer to this mechanism of conjugate-fault formation as paired generalshear (PGS) deformation. Assuming a Newtonian fluid, the observed Tibetan GPS velocity field requires the paired shear zones to have formed either by gravitational spreading of the Tibetan lithosphere or a horizontal shear at the base of the upper crust or mantle lithosphere. We demonstrate the feasibility of the two inferred mechanisms for the formation of V-shaped conjugate faults using simple sandbox experiments. Our paired general-shear (PGS) model implies that the combined effect of the state of strain and the state of stress favors only one set (i.e., Riedel shear) of Coulomb conjugate shear fractures under general shear flow. It also requires continuum deformation rather than discrete extrusion tectonics as the most dominant mode of deformation during the late Cenozoic development of the central Tibetan Plateau.
引用
收藏
页码:1798 / 1821
页数:24
相关论文
共 50 条
  • [21] Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry
    Taylor, Michael
    Peltzer, Gilles
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2006, 111 (B12)
  • [22] Effects of Earthquake Recurrence on Localization of Interseismic Deformation Around Locked Strike-Slip Faults
    Zhu, Yijie
    Wang, Kelin
    He, Jiangheng
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (08)
  • [23] LOWER-CRUSTAL DEFORMATION DURING TERRANE DISPERSION ALONG STRIKE-SLIP FAULTS
    BEAUDOIN, BC
    TECTONOPHYSICS, 1994, 232 (1-4) : 257 - 266
  • [24] BLOCK ROTATION AND DEFORMATION BY STRIKE-SLIP FAULTS .2. THE PROPERTIES OF A TYPE OF MACROSCOPIC DISCONTINUOUS DEFORMATION
    GARFUNKEL, Z
    RON, H
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1985, 90 (NB10): : 8589 - 8602
  • [25] Termination of strike-slip faults at convergence zones within continental transform boundaries: examples from the California Continental Borderland
    Legg, MR
    Kamerling, MJ
    Francis, RD
    VERTICAL COUPLING AND DECOUPLING IN THE LITHOSPHERE, 2004, 227 : 65 - 82
  • [26] Structural control on uranium mineralization in South China: Implications for fluid flow in continental strike-slip faults
    李建威
    傅昭仁
    周美夫
    李紫金
    李先福
    Science in China(Series D:Earth Sciences), 2002, (09) : 851 - 864
  • [27] Investigating the Deformation and Failure Mechanism of a Submarine Tunnel with Flexible Joints Subjected to Strike-Slip Faults
    Zhou, Guangxin
    Sheng, Qian
    Cui, Zhen
    Wang, Tianqiang
    Ma, Yalina
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (12)
  • [28] Can Lateral Viscosity Contrasts Explain Asymmetric Interseismic Deformation around Strike-Slip Faults?
    Vaghri, Ali
    Hearn, Elizabeth H.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2012, 102 (02) : 490 - 503
  • [29] Volcano growth versus deformation by strike-slip faults: Morphometric characterization through analogue modelling
    Grosse, Pablo
    Poppe, Sam
    Delcamp, Audray
    de Vries, Benjamin van Wyk
    Kervyn, Matthieu
    TECTONOPHYSICS, 2020, 781
  • [30] Extension during continental convergence in the Eastern Alps: The influence of orogen-scale strike-slip faults
    Robl, Joerg
    Stuewe, Kurt
    Hergarten, Stefan
    Evans, Lynn
    GEOLOGY, 2008, 36 (12) : 963 - 966