Circuit Complexity and Multiplicative Complexity of Boolean Functions

被引:0
|
作者
Kojevnikov, Arist [1 ]
Kulikov, Alexander S. [1 ]
机构
[1] VA Steklov Math Inst, St Petersburg Dept, Moscow 117333, Russia
来源
PROGRAMS, PROOFS, PROCESSES | 2010年 / 6158卷
关键词
COMBINATIONAL COMPLEXITY; BOUNDS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this note, we use lower bounds on Boolean multiplicative complexity to prove lower bounds on Boolean circuit complexity. We give a very simple proof of a 7n/3 - c lower bound on the circuit complexity of a large class of functions representable by high degree polynomials over GF(2). The key idea of the proof is a circuit complexity measure assigning different weights to XOR and AND gates.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 50 条
  • [31] COMPLEXITY HIERARCHIES FOR BOOLEAN FUNCTIONS
    MCCOLL, WF
    ACTA INFORMATICA, 1978, 11 (01) : 71 - 77
  • [32] Local complexity of Boolean functions
    Chashkin, A
    DISCRETE APPLIED MATHEMATICS, 2004, 135 (1-3) : 55 - 64
  • [33] COMPOSITIONAL COMPLEXITY OF BOOLEAN FUNCTIONS
    ABELSON, H
    EHRENFEUCHT, A
    FICKETT, J
    MYCIELSKI, J
    DISCRETE APPLIED MATHEMATICS, 1982, 4 (01) : 1 - 10
  • [34] THE VLSI COMPLEXITY OF BOOLEAN FUNCTIONS
    KRAMER, MR
    VANLEEUWEN, J
    LECTURE NOTES IN COMPUTER SCIENCE, 1984, 171 : 397 - 407
  • [35] COMPLEXITY OF MONOTONE BOOLEAN FUNCTIONS
    PIPPENGER, N
    MATHEMATICAL SYSTEMS THEORY, 1978, 11 (04): : 289 - 316
  • [36] Boolean Circuit Complexity of Regular Languages
    Valdats, Maris
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2014, (151): : 342 - 354
  • [37] MULTIPLICATIVE COMPLEXITY OF SOME RATIONAL FUNCTIONS
    HARTMANN, W
    SCHUSTER, P
    THEORETICAL COMPUTER SCIENCE, 1980, 10 (01) : 53 - 61
  • [38] Concrete multiplicative complexity of symmetric functions
    Boyar, Joan
    Peralta, Rene
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 179 - 189
  • [39] On the Modulo Degree Complexity of Boolean Functions
    Li, Qian
    Sun, Xiaoming
    COMPUTING AND COMBINATORICS, COCOON 2017, 2017, 10392 : 384 - 395
  • [40] On the modulo degree complexity of Boolean functions
    Li, Qian
    Sun, Xiaoming
    THEORETICAL COMPUTER SCIENCE, 2020, 818 (818) : 32 - 40