Long-Term Pipeline Failure Prediction Using Nonparametric Survival Analysis

被引:6
|
作者
Weeraddana, Dilusha [1 ]
MallawaArachchi, Sudaraka [2 ]
Warnakula, Tharindu [2 ]
Li, Zhidong [3 ]
Wang, Yang [3 ]
机构
[1] Data61 Commonwealth Sci & Ind Res Org CSIRO, Eveleigh, Australia
[2] Monash Univ, Melbourne, Vic, Australia
[3] Univ Technol Sydney, Sydney, NSW, Australia
关键词
Advanced assets management; Machine learning; Data mining; Nonparametric; Survival analysis; Random survival forest; MODELS;
D O I
10.1007/978-3-030-67667-4_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Australian water infrastructure is more than a hundred years old, thus has begun to show its age through water main failures. Our work concerns approximately half a million pipelines across major Australian cities that deliver water to houses and businesses, serving over five million customers. Failures on these buried assets cause damage to properties and water supply disruptions. We applied Machine Learning techniques to find a cost-effective solution to the pipe failure problem in these Australian cities, where on average 1500 of water main failures occur each year. To achieve this objective, we construct a detailed picture and understanding of the behaviour of the water pipe network by developing a Machine Learning model to assess and predict the failure likelihood of water main breaking using historical failure records, descriptors of pipes and other environmental factors. Our results indicate that our system incorporating a nonparametric survival analysis technique called 'Random Survival Forest' outperforms several popular algorithms and expert heuristics in long-term prediction. In addition, we construct a statistical inference technique to quantify the uncertainty associated with the long-term predictions.
引用
收藏
页码:139 / 156
页数:18
相关论文
共 50 条
  • [21] Clinical and Genetic Modifiers of Long-Term Survival in Heart Failure
    Cresci, Sharon
    Kelly, Reagan J.
    Cappola, Thomas P.
    Diwan, Abhinav
    Dries, Daniel
    Kardia, Sharon L. R.
    Dorn, Gerald W., II
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2009, 54 (05) : 432 - 444
  • [22] Long-term survival in the octogenarian patients hospitalised for heart failure
    Abu Assi, E.
    Grigorian Shamagian, L.
    Pena Gil, C.
    Gonzalez Juanatey, J. R.
    EUROPEAN HEART JOURNAL, 2008, 29 : 182 - 182
  • [23] Determinants of long-term survival in patients hospitalized for heart failure
    Martinez-Selles, Manuel
    Martinez, Esther
    Cortes, Marcelino
    Prieto, Raquel
    Gallego, Laura
    Fernandez-Aviles, Francisco
    JOURNAL OF CARDIOVASCULAR MEDICINE, 2010, 11 (03) : 164 - 169
  • [24] Nutritional state predicts long-term survival in heart failure
    Sze, S.
    Wong, K. Y. K.
    Kazmi, S.
    Mellor, D.
    Rigby, A.
    Clark, A. L. C.
    EUROPEAN HEART JOURNAL, 2015, 36 : 369 - 369
  • [25] Long-term survival in diabetic patients with congestive heart failure
    De Groote, P
    Lamblin, N
    Mouquet, F
    Plichon, D
    Dagorne, J
    Millaire, A
    Van Belle, E
    Bauters, C
    EUROPEAN HEART JOURNAL, 2003, 24 : 147 - 147
  • [26] Major Depression and Long-Term Survival of Patients With Heart Failure
    Freedland, Kenneth E.
    Hesseler, Michael J.
    Carney, Robert M.
    Steinmeyer, Brian C.
    Skala, Judith A.
    Davila-Roman, Victor G.
    Rich, Michael W.
    PSYCHOSOMATIC MEDICINE, 2016, 78 (08): : 896 - 903
  • [27] ECG COMPRESSION USING LONG-TERM PREDICTION
    NAVE, G
    COHEN, A
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1993, 40 (09) : 877 - 885
  • [28] Prediction of Pulmonary Complications and Long-Term Survival in Systemic Sclerosis
    Nihtyanova, Svetlana I.
    Schreiber, Benjamin E.
    Ong, Voon H.
    Rosenberg, Daniel
    Moinzadeh, Pia
    Coghlan, J. Gerrard
    Wells, Athol U.
    Denton, Christopher P.
    ARTHRITIS & RHEUMATOLOGY, 2014, 66 (06) : 1625 - 1635
  • [29] Long-term performance bottleneck analysis and prediction
    Gao, Fei
    Sair, Suleyman
    PROCEEDINGS 2006 INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, 2007, : 3 - 9
  • [30] Cluster Analysis of Cardiac Resynchronization Response Parameters Predicts Long-Term Survival With Heart Failure
    Bilchick, Kenneth C.
    Gao, Xu
    Bivona, Derek
    Malhotra, Rohit
    Mangrum, Michael
    Darby, Andrew
    Mehta, Nishaki M.
    Mason, Pamela K.
    Epstein, Frederick H.
    Holmes, Jeffrey W.
    Mazimba, Sula
    CIRCULATION, 2020, 142