Long-Term Pipeline Failure Prediction Using Nonparametric Survival Analysis

被引:6
|
作者
Weeraddana, Dilusha [1 ]
MallawaArachchi, Sudaraka [2 ]
Warnakula, Tharindu [2 ]
Li, Zhidong [3 ]
Wang, Yang [3 ]
机构
[1] Data61 Commonwealth Sci & Ind Res Org CSIRO, Eveleigh, Australia
[2] Monash Univ, Melbourne, Vic, Australia
[3] Univ Technol Sydney, Sydney, NSW, Australia
关键词
Advanced assets management; Machine learning; Data mining; Nonparametric; Survival analysis; Random survival forest; MODELS;
D O I
10.1007/978-3-030-67667-4_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Australian water infrastructure is more than a hundred years old, thus has begun to show its age through water main failures. Our work concerns approximately half a million pipelines across major Australian cities that deliver water to houses and businesses, serving over five million customers. Failures on these buried assets cause damage to properties and water supply disruptions. We applied Machine Learning techniques to find a cost-effective solution to the pipe failure problem in these Australian cities, where on average 1500 of water main failures occur each year. To achieve this objective, we construct a detailed picture and understanding of the behaviour of the water pipe network by developing a Machine Learning model to assess and predict the failure likelihood of water main breaking using historical failure records, descriptors of pipes and other environmental factors. Our results indicate that our system incorporating a nonparametric survival analysis technique called 'Random Survival Forest' outperforms several popular algorithms and expert heuristics in long-term prediction. In addition, we construct a statistical inference technique to quantify the uncertainty associated with the long-term predictions.
引用
收藏
页码:139 / 156
页数:18
相关论文
共 50 条
  • [1] Prediction of long-term survival after gastrectomy using random survival forests
    Rahman, S. A.
    Maynard, N.
    Trudgill, N.
    Crosby, T.
    Park, M.
    Wahedally, H.
    Underwood, T. J.
    Cromwell, D. A.
    BRITISH JOURNAL OF SURGERY, 2021, 108 (11) : 1341 - 1350
  • [2] Predicting Long-Term Risk for Relationship Dissolution Using Nonparametric Conditional Survival Trees
    Kliem, Soeren
    Weusthoff, Sarah
    Hahlweg, Kurt
    Baucom, Katherine J. W.
    Baucom, Brian R.
    JOURNAL OF FAMILY PSYCHOLOGY, 2015, 29 (06) : 807 - 817
  • [3] Heart Transplantation Following Fontan Failure: Long-Term Survival Analysis
    D'Alonzo, Michele
    Brunelli, Federico
    Seddio, Francesco
    Papesso, Francesca Julia
    Petruccelli, Rocco Davide
    Di Cosola, Roberta
    Merlo, Maurizio
    Muneretto, Claudio
    Terzi, Amedeo
    Uricchio, Nicola
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (10)
  • [4] Long-term cancer survival prediction using multimodal deep learning
    Vale-Silva, Luis A.
    Rohr, Karl
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] Long-term cancer survival prediction using multimodal deep learning
    Luís A. Vale-Silva
    Karl Rohr
    Scientific Reports, 11
  • [6] Quantitative prediction of long-term failure of polycarbonate
    Klompen, ETJ
    Engels, TAP
    van Breemen, LCA
    Schreurs, PJG
    Govaert, LE
    Meijer, HEH
    MACROMOLECULES, 2005, 38 (16) : 7009 - 7017
  • [7] Prediction of Long-term Survival After Status Epilepticus Using the ACD Score
    Roberg, Lars Egil
    Monsson, Olav
    Kristensen, Simon Bang
    Dahl, Svein Magne
    Ulvin, Line Bedos
    Heuser, Kjell
    Tauboll, Erik
    Strzelczyk, Adam
    Knake, Susanne
    Bechert, Lydia
    Rosenow, Felix
    Beier, Dagmar
    Beniczky, Sandor
    Kroigard, Thomas
    Beier, Christoph Patrick
    JAMA NEUROLOGY, 2022, 79 (06) : 604 - 613
  • [8] Conditional survival analysis and dynamic prediction of long-term survival in Merkel cell carcinoma patients
    Zhang, Jin
    Xiang, Yang
    Chen, Jiqiu
    Liu, Lei
    Jin, Jian
    Zhu, Shihui
    FRONTIERS IN MEDICINE, 2024, 11
  • [9] Long-term survival and failure analysis of anatomical stemmed and stemless shoulder arthroplasties
    Maertens, N.
    Heinze, M.
    Awiszus, F.
    Bertrand, J.
    Lohmann, C. H.
    Berth, A.
    BONE & JOINT JOURNAL, 2021, 103B (07): : 1292 - 1300
  • [10] Long-term trends in the incidence of and survival with heart failure
    Levy, D
    Kenchaiah, S
    Larson, MG
    Benjamin, EJ
    Kupka, MJ
    Ho, KKL
    Murabito, JM
    Vasan, RS
    NEW ENGLAND JOURNAL OF MEDICINE, 2002, 347 (18): : 1397 - 1402