THE CAUCHY PROBLEM FOR A FAMILY OF TWO-DIMENSIONAL FRACTIONAL BENJAMIN-ONO EQUATIONS

被引:7
|
作者
Bustamante, Eddye [1 ]
Jimenez Urrea, Jose [1 ]
Mejia, Jorge [1 ]
机构
[1] Univ Nacl Colombia, Dept Matemat, Medellin 3840, Colombia
关键词
Benjamin Ono equation; LOCAL WELL-POSEDNESS; SOLITARY WAVES; REGULARITY;
D O I
10.3934/cpaa.2019057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove that the initial value problem (IVP) associated to the fractional two-dimensional Benjamin-Ono equation u(t) + D(x)(alpha)u(x) + Hu(yy) +uu(x) = 0 (x, y) is an element of R-2, t is an element of R,}, u(x, y, 0) = u(0)(x, y), where 0 < alpha <= 1, D-x(alpha) denotes the operator defined through the Fourier transform by (D(x)(alpha)f)boolean AND(xi, eta) :=vertical bar xi vertical bar(alpha)(f) over cap(xi, eta), (0.1) and H denotes the Hilbert transform with respect to the variable x, is locally well posed in the Sobolev space H-s (R-2) with s > 3/2 + 1/4 (1 - alpha).
引用
收藏
页码:1177 / 1203
页数:27
相关论文
共 50 条
  • [21] THE BENJAMIN-ONO AND RELATED EQUATIONS [1]
    CASE, KM
    PHYSICA D, 1981, 3 (1-2): : 185 - 192
  • [22] THE PROBLEM OF CAUCHY ASSOCIATED WITH A NON-LOCAL DISTURBATION OF THE BENJAMIN-ONO EQUATION
    Pastran Ramirez, Ricardo A.
    Rodriguez-Blanco, Guillermo
    BOLETIN DE MATEMATICAS, 2006, 13 (01): : 20 - 42
  • [23] ON DECAY OF THE SOLUTIONS FOR THE DISPERSION GENERALIZED-BENJAMIN-ONO AND BENJAMIN-ONO EQUATIONS
    Cunha, Alysson
    arXiv, 2022,
  • [25] The Peierls-Nabarro and Benjamin-Ono equations
    Toland, JF
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 145 (01) : 136 - 150
  • [26] On the Zero-Dispersion Limit of the Benjamin-Ono Cauchy Problem for Positive Initial Data
    Miller, Peter D.
    Xu, Zhengjie
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (02) : 205 - 270
  • [27] GENERALIZED SOLUTIONS OF THE BENJAMIN-ONO AND SMITH EQUATIONS
    BIAGIONI, HA
    IORIO, RJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 182 (02) : 465 - 485
  • [28] CONSTANTS OF THE MOTION FOR THE BENJAMIN-ONO AND RELATED EQUATIONS
    BROER, LJF
    TENEIKELDER, HMM
    PHYSICS LETTERS A, 1982, 92 (02) : 56 - 58
  • [29] Blow up and instability of solitary wave solutions to a generalized Kadomtsev-Petviashvili equation and two-dimensional Benjamin-Ono equations
    Chen, Jianqing
    Guo, Boling
    Han, Yongqian
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2089): : 49 - 64
  • [30] ON A HIGHER DIMENSIONAL VERSION OF THE BENJAMIN-ONO EQUATION
    Hickman, Jonathan
    Linares, Felipe
    Riano, Oscar G.
    Rogers, Keith M.
    Wright, James
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) : 4544 - 4569