Transversely stable soliton trains in photonic lattices

被引:8
|
作者
Yang, Jianke [1 ]
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 03期
基金
美国国家科学基金会;
关键词
SNAKE INSTABILITY; GAP SOLITONS;
D O I
10.1103/PhysRevA.84.033840
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report the existence of transversely stable soliton trains in optics. These stable soliton trains are found in two-dimensional square photonic lattices when they bifurcate from X-symmetry points with saddle-shaped diffraction inside the first Bloch band and their amplitudes are above a certain threshold. We also show that soliton trains with low amplitudes or bifurcated from edges of the first Bloch band (Gamma and M points) still suffer transverse instability. These results are obtained in the continuous lattice model and are further corroborated by the discrete model.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Dynamics of collisions between soliton trains
    Silmon-Clyde, JP
    Elgin, JN
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1999, 16 (09) : 1348 - 1353
  • [42] Stability of multicomponent-soliton trains
    Janutka, Andrzej
    PHYSICA SCRIPTA, 2010, 82 (04)
  • [43] PROPERTIES OF PHASE MODULATED SOLITON TRAINS
    SUZUKI, K
    HIROTA, R
    YOSHIKAWA, K
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1973, 12 (03) : 361 - 365
  • [44] STABILITY OF MOVING SOLITON LATTICES
    BURKOV, SE
    LIFSIC, AE
    WAVE MOTION, 1983, 5 (03) : 197 - 213
  • [45] Soliton turbulence as a thermodynamic limit of stochastic soliton lattices
    El, GA
    Krylov, AL
    Molchanov, SA
    Venakides, S
    PHYSICA D, 2001, 152 : 653 - 664
  • [46] Soliton mobility in disordered lattices
    Sun, Zhi-Yuan
    Fishman, Shmuel
    Soffer, Avy
    PHYSICAL REVIEW E, 2015, 92 (04):
  • [47] SOLITON LATTICES AT FINITE TEMPERATURES
    TAKANO, K
    PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (06): : 1401 - 1404
  • [48] Soliton lattices in carbon nanotubes
    Belonenko, M. B.
    Demushkina, E. V.
    Lebedev, N. G.
    HYDROGEN MATERIALS SCIENCE AND CHEMISTRY OF CARBON NANOMATERIALS, 2007, : 471 - +
  • [49] Gap solitons and soliton trains in finite-sized two-dimensional periodic and quasiperiodic photonic crystals
    Xie, P
    Zhang, ZQ
    Zhang, XD
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [50] Infinite soliton and kink-soliton trains for nonlinear Schrodinger equations
    Le Coz, Stefan
    Tsai, Tai-Peng
    NONLINEARITY, 2014, 27 (11) : 2689 - 2709