Robotic fabrication of high-quality lamellae for aberration-corrected transmission electron microscopy

被引:10
|
作者
Tsurusawa, Hideyo [1 ]
Nakanishi, Nobuto [1 ]
Kawano, Kayoko [1 ]
Chen, Yiqiang [2 ]
Dutka, Mikhail [2 ]
Van Leer, Brandon [3 ]
Mizoguchi, Teruyasu [4 ]
机构
[1] FEI Japan Ltd, Thermo Fisher Sci, Shinagawa Ku, 4-12-2 Higashi Shinagawa, Tokyo 1400002, Japan
[2] Thermo Fisher Sci, Achtseweg Noord 5, NL-5651 GG Eindhoven, Netherlands
[3] Thermo Fisher Sci, 5350 NE Dawson Creek Dr, Hillsboro, OR 97124 USA
[4] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
关键词
VIBRATIONAL SPECTROSCOPY; SAMPLE PREPARATION; ATOMIC COLUMNS; PHASE-CONTRAST; STEM; CHEMISTRY; CRYSTAL; SEARCH;
D O I
10.1038/s41598-021-00595-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aberration-corrected scanning transmission electron microscopy (STEM) is widely used for atomic-level imaging of materials but severely requires damage-free and thin samples (lamellae). So far, the preparation of the high-quality lamella from a bulk largely depends on manual processes by a skilled operator. This limits the throughput and repeatability of aberration-corrected STEM experiments. Here, inspired by the recent successes of "robot scientists", we demonstrate robotic fabrication of high-quality lamellae by focused-ion-beam (FIB) with automation software. First, we show that the robotic FIB can prepare lamellae with a high success rate, where the FIB system automatically controls rough-milling, lift-out, and final-thinning processes. Then, we systematically optimized the FIB parameters of the final-thinning process for single crystal Si. The optimized Si lamellae were evaluated by aberration-corrected STEM, showing atomic-level images with 55 pm resolution and quantitative repeatability of the spatial resolution and lamella thickness. We also demonstrate robotic fabrication of high-quality lamellae of SrTiO3 and sapphire, suggesting that the robotic FIB system may be applicable for a wide range of materials. The throughput of the robotic fabrication was typically an hour per lamella. Our robotic FIB will pave the way for the operator-free, high-throughput, and repeatable fabrication of the high-quality lamellae for aberration-corrected STEM.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides
    Zhang, Qing-Hua
    Xiao, Dong-Dong
    Gu, Lin
    CHINESE PHYSICS B, 2016, 25 (06)
  • [32] Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy
    Krumeich, F.
    Mueller, E.
    Wepf, R. A.
    MICRON, 2013, 49 : 1 - 14
  • [33] Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides
    张庆华
    肖东东
    谷林
    Chinese Physics B, 2016, (06) : 5 - 12
  • [34] Materials Advances through Aberration-Corrected Electron Microscopy
    S. J. Pennycook
    M. Varela
    C. J. D. Hetherington
    A. I. Kirkland
    MRS Bulletin, 2006, 31 : 36 - 43
  • [35] New possibilities with aberration-corrected electron microscopy PREFACE
    Cockayne, David
    Kirkland, Angus I.
    Nellist, Peter D.
    Bleloch, Andrew
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1903): : 3633 - 3635
  • [36] The First Years of the Aberration-Corrected Electron Microscopy Century
    Batson, Philip E.
    MICROSCOPY AND MICROANALYSIS, 2012, 18 (04) : 652 - 655
  • [37] High-resolution imaging with an aberration-corrected transmission electron microscope
    Lentzen, M
    Jahnen, B
    Jia, CL
    Thust, A
    Tillmann, K
    Urban, K
    ULTRAMICROSCOPY, 2002, 92 (3-4) : 233 - 242
  • [38] Seeing inside materials by aberration-corrected electron microscopy
    Pennycook, S. J.
    van Benthem, K.
    Marinopoulos, A. G.
    Oh, S-H.
    Molina, S. I.
    Borisevich, A. Y.
    Luo, W.
    Pantelides, S. T.
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2011, 8 (10-12) : 935 - 947
  • [39] Materials advances through aberration-corrected electron microscopy
    Pennycook, SJ
    Varela, M
    Hetherington, CJD
    Kirkland, AI
    MRS BULLETIN, 2006, 31 (01) : 36 - 43
  • [40] Exploring aberration-corrected electron microscopy for compound semiconductors
    Smith, David J.
    Aoki, Toshihiro
    Mardinly, John
    Zhou, Lin
    McCartney, Martha R.
    MICROSCOPY, 2013, 62 : S65 - S73