A cognitive and neural network approach for software defect prediction

被引:0
|
作者
Rajnish, Kumar [1 ]
Bhattacharjee, Vandana [1 ]
机构
[1] Birla Inst Technol, Dept CSE, Ranchi 835215, Bihar, India
关键词
Machine learning; software defect prediction; CNN model; cognitive weight; basic control structures; neural network; FAULT PREDICTION; SYSTEMS;
D O I
10.3233/JIFS-220497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software defect prediction is used to assist developers in finding potential defects and allocating their testing efforts as the scale of software grows. Traditional software defect prediction methods primarily concentrate on creating static code metrics that are fed into machine learning classifiers to predict defects in the code. To achieve the desired classifier performance, appropriate design decisions are required for deep neural network (DNN) and convolutional neural network (CNN) models. This is especially important when predicting software module fault proneness. When correctly identified, this could help to reduce testing costs by concentrating efforts on the modules that have been identified as fault prone. This paper proposes a CONVSDP and DNNSDP (cognitive and neural network) approach for predicting software defects. Python Programming Language with Keras and TensorFlow was used as the framework. From three NASA system datasets (CM1, KC3, and PC1) selected from PROMISE repository, a comparative analysis with machine learning algorithms (such as Random Forest (RF), Decision Trees (DT), Nave Bayes (NF), and Support Vector Machine (SVM) in terms of F-Measure (known as F1-score), Recall, Precision, Accuracy, Receiver Operating Characteristics (ROC) and Area Under Curve (AUC) has been presented. We extract four dataset attributes from the original datasets and use them to estimate the development effort, development time, and number of errors. The number of operands, operators, branch count, and executable LOCs are among these attributes. Furthermore, a new parameter called cognitive weight (Wc) of Basic Control Structure (BCS) is proposed to make the proposed cognitive technique more effective, and a cognitive data set of 8 features for NASA system datasets (CM1, KC3, and PC1) selected from the PROMISE repository to predict software defects is created. The experimental results showed that the CONVSDP and DNNSDP models was comparable to existing classifiers in both original datasets and cognitive data sets, and that it outperformed them in most of the experiments.
引用
收藏
页码:6477 / 6503
页数:27
相关论文
共 50 条
  • [21] Neural Network Parameter Optimization Based on Genetic Algorithm for Software Defect Prediction
    Wahono, Romi Satria
    Herman, Nanna Suryana
    Ahnnad, Sabrina
    ADVANCED SCIENCE LETTERS, 2014, 20 (10-12) : 1951 - 1955
  • [22] Software Defect Prediction via Multi-Channel Convolutional Neural Network
    Lang, Chen
    Li, Jidong
    Kobayashi, Takashi
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS 2021), 2021, : 543 - 554
  • [23] Hybrid Optimization-Based Neural Network Classifier for Software Defect Prediction
    Prashanthi, M.
    Mohan, M. Chandra
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2024, 24 (04)
  • [24] Using neural network models in the quality management system for the software defect prediction
    Danilov, A. D.
    Samotsvet, D. A.
    Mugatina, V. M.
    INTERNATIONAL WORKSHOP ADVANCED TECHNOLOGIES IN MATERIAL SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING - MIP: ENGINEERING - 2019, 2019, 537
  • [25] Software defect prediction techniques using metrics based on neural network classifier
    R. Jayanthi
    Lilly Florence
    Cluster Computing, 2019, 22 : 77 - 88
  • [26] Software defect prediction techniques using metrics based on neural network classifier
    Jayanthi, R.
    Florence, Lilly
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1): : 77 - 88
  • [27] Software Defect Prediction Based on Elman Neural Network and Cuckoo Search Algorithm
    Song K.
    Lv S.
    Hu D.
    He P.
    Mathematical Problems in Engineering, 2021, 2021
  • [28] Integrated Approach to Software Defect Prediction
    Felix, Ebubeogu Amarachukwu
    Lee, Sai Peck
    IEEE ACCESS, 2017, 5 : 21524 - 21547
  • [29] Software Defect Prediction Using Neural Networks
    Jindal, Rajni
    Malhotra, Ruchika
    Jain, Abha
    2014 3RD INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (ICRITO) (TRENDS AND FUTURE DIRECTIONS), 2014,
  • [30] Feature Selection Using Artificial Immune Network: An Approach for Software Defect Prediction
    Mumtaz, Bushra
    Kanwal, Summrina
    Alamri, Sultan
    Khan, Faiza
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (03): : 669 - 684