A cognitive and neural network approach for software defect prediction

被引:0
|
作者
Rajnish, Kumar [1 ]
Bhattacharjee, Vandana [1 ]
机构
[1] Birla Inst Technol, Dept CSE, Ranchi 835215, Bihar, India
关键词
Machine learning; software defect prediction; CNN model; cognitive weight; basic control structures; neural network; FAULT PREDICTION; SYSTEMS;
D O I
10.3233/JIFS-220497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software defect prediction is used to assist developers in finding potential defects and allocating their testing efforts as the scale of software grows. Traditional software defect prediction methods primarily concentrate on creating static code metrics that are fed into machine learning classifiers to predict defects in the code. To achieve the desired classifier performance, appropriate design decisions are required for deep neural network (DNN) and convolutional neural network (CNN) models. This is especially important when predicting software module fault proneness. When correctly identified, this could help to reduce testing costs by concentrating efforts on the modules that have been identified as fault prone. This paper proposes a CONVSDP and DNNSDP (cognitive and neural network) approach for predicting software defects. Python Programming Language with Keras and TensorFlow was used as the framework. From three NASA system datasets (CM1, KC3, and PC1) selected from PROMISE repository, a comparative analysis with machine learning algorithms (such as Random Forest (RF), Decision Trees (DT), Nave Bayes (NF), and Support Vector Machine (SVM) in terms of F-Measure (known as F1-score), Recall, Precision, Accuracy, Receiver Operating Characteristics (ROC) and Area Under Curve (AUC) has been presented. We extract four dataset attributes from the original datasets and use them to estimate the development effort, development time, and number of errors. The number of operands, operators, branch count, and executable LOCs are among these attributes. Furthermore, a new parameter called cognitive weight (Wc) of Basic Control Structure (BCS) is proposed to make the proposed cognitive technique more effective, and a cognitive data set of 8 features for NASA system datasets (CM1, KC3, and PC1) selected from the PROMISE repository to predict software defects is created. The experimental results showed that the CONVSDP and DNNSDP models was comparable to existing classifiers in both original datasets and cognitive data sets, and that it outperformed them in most of the experiments.
引用
收藏
页码:6477 / 6503
页数:27
相关论文
共 50 条
  • [1] A cognitive and neural network approach for software defect prediction
    Rajnish, Kumar
    Bhattacharjee, Vandana
    Journal of Intelligent and Fuzzy Systems, 2022, 43 (05): : 6477 - 6503
  • [2] Software Defect Prediction Approach Based on a Diversity Ensemble Combined With Neural Network
    Chen, Jinfu
    Xu, Jiaping
    Cai, Saihua
    Wang, Xiaoli
    Chen, Haibo
    Li, Zhehao
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (03) : 1487 - 1501
  • [3] Deep neural network based hybrid approach for software defect prediction using software metrics
    Manjula, C.
    Florence, Lilly
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4): : S9847 - S9863
  • [4] Deep neural network based hybrid approach for software defect prediction using software metrics
    C. Manjula
    Lilly Florence
    Cluster Computing, 2019, 22 : 9847 - 9863
  • [5] Software Defect Prediction via Convolutional Neural Network
    Li, Jian
    He, Pinjia
    Zhu, Jieming
    Lyu, Michael R.
    2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS), 2017, : 318 - 328
  • [6] Software Defect Prediction using Convolutional Neural Network
    Wongpheng, Kittisak
    Visutsak, Porawat
    35TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2020), 2020, : 240 - 243
  • [7] A Neural Network Approach for Software Reliability Prediction
    Samal, Umashankar
    Kumar, Ajay
    INTERNATIONAL JOURNAL OF RELIABILITY QUALITY AND SAFETY ENGINEERING, 2024, 31 (03)
  • [8] Software Defect Prediction Using SMOTE and Artificial Neural Network
    Dipa, Wisnu Arya
    Sunindyo, Wikan Danar
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE): DATA AND SOFTWARE ENGINEERING FOR SUPPORTING SUSTAINABLE DEVELOPMENT GOALS, 2021,
  • [9] Software Defect Prediction through Neural Network and Feature Selections
    Alkhasawneh, Mutasem Shabeb
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [10] Software defect prediction using cost-sensitive neural network
    Arar, Omer Faruk
    Ayan, Kursat
    APPLIED SOFT COMPUTING, 2015, 33 : 263 - 277