Enduring performance of alkali-activated mortars with metakaolin as granulated blast furnace slag replacement

被引:22
|
作者
Asaad, Mohammad Ali [1 ]
Huseien, Ghasan Fahim [2 ]
Memon, Ruhal Pervez [3 ]
Ghoshal, S. K. [4 ]
Mohammadhosseini, Hossein [5 ]
Alyousef, Rayed [6 ]
机构
[1] Iraq Univ Coll IUC, Dept Civil Engn, Basra, Iraq
[2] Natl Univ Singapore, Sch Design & Environm, Dept Bldg, Singapore 117566, Singapore
[3] Ziauddin Univ, Fac Engn Sci & Technol, Dept Civil Engn, Karachi 75000, Pakistan
[4] Univ Teknol Malaysia UTM, Fac Sci, Dept Phys, AOMRG & Laser Ctr, Skudai 81310, Johor Bahru, Malaysia
[5] Univ Teknol Malaysia UTM, Sch Civil Engn, Inst Smart Infrastruct & Innovat Construct ISIIC, Skudai 81310, Malaysia
[6] Prince Sattam Bin Abdulaziz Univ, Dept Civil Engn, Al Kharj 16273, Saudi Arabia
关键词
Alkali-activated binder; GBFS; MK; Drying shrinkage; Sulfuric acid resistance; SULFURIC-ACID RESISTANCE; FLY-ASH; DRYING SHRINKAGE; GEOPOLYMER MORTARS; CONCRETE; DURABILITY; MECHANISM; CHLORIDE; BINDERS;
D O I
10.1016/j.cscm.2021.e00845
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In the construction industries worldwide, improving the materials durability and achieving sustainability are the main goal. Owing to their excellent strength performance various alkaliactivated binders can be one of the alternative solutions to the polluting traditional cement. Currently, ground blast furnace slag (GBFS) is the major base material used in the alkali-activated binders. High drying shrinkage and low resistance to sulfuric acid attack affect negatively the durability performance and life span of alkali-activated paste, mortars, and concretes made from GBFS. Thus, a series of alkali-activated mortars (AAMs) were designed with various contents (5, 10, 15, 20 and 25, mass%) of metakaolin (MK) as GBFS replacement to improve their strength performance. In addition, the strength and durability performance of the designed mixes were compared with the control mixture prepared using 100% of GBFS. The impact of varying MK level on the long-term performance such as compressive strength, porosity, resistance to sulfuric acid attacks, wet-dry cycles, drying shrinkage, and carbonation were evaluated. Various recommended standards were followed to cast the specimens in different shapes (cubes, cylinders, and prisms) and sizes. Mortar containing 10% of MK as GBFS replacement showed the highest compressive strength (63.4 MPa) at 28 days of curing age. Furthermore, the inclusion of MK as GBFS replacement was shown to improve the AAMs durability performance wherein the drying shrinkage was reduced and the resistance to aggressive environments was increased. The specimens containing 5% and 10% of MK revealed a lower porosity and carbonation depth compared to the control specimen. It was concluded that the proposed AAMs due to their long-term stability can be the sustainable and potential substitutes to the traditional construction materials.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Effects of Activator Properties and Ferrochrome Slag Aggregates on the Properties of alkali-activated Blast Furnace Slag Mortars
    Caner Elibol
    Ozkan Sengul
    Arabian Journal for Science and Engineering, 2016, 41 : 1561 - 1571
  • [22] Effects of Activator Properties and Ferrochrome Slag Aggregates on the Properties of alkali-activated Blast Furnace Slag Mortars
    Elibol, Caner
    Sengul, Ozkan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2016, 41 (04) : 1561 - 1571
  • [23] The Effects of Partial Replacement of Ground Granulated Blast Furnace Slag by Ground Wood Ash on Alkali-Activated Binder Systems
    Ercan, Ece Ezgi Teker
    Cwirzen, Andrzej
    Habermehl-Cwirzen, Karin
    MATERIALS, 2023, 16 (15)
  • [24] Recycling of waste PET granules as aggregate in alkali-activated blast furnace slag/metakaolin blends
    Akcaozoglu, Semiha
    Ulu, Cuneyt
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 58 : 31 - 37
  • [25] Alkali-Activated Ground-Granulated Blast Furnace Slag for Stabilization of Marine Soft Clay
    Yi, Yaolin
    Li, Cheng
    Liu, Songyu
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2015, 27 (04)
  • [26] Experimental Study on Compound Binding Material of Alkali Activated Metakaolin and Ground Granulated Blast Furnace Slag
    He, Yongjia
    Lu, Linnu
    Hu, Shuguang
    APPLICATIONS OF ENGINEERING MATERIALS, PTS 1-4, 2011, 287-290 : 1275 - +
  • [27] Resistance of alkali-activated blast furnace slag to acids
    Hruby, P.
    Bilek, V.
    Topolar, L.
    Kalina, L.
    Iliushchenko, V.
    Koplik, J.
    Masilko, J.
    Soukal, F.
    INTERNATIONAL CONFERENCE BUILDING MATERIALS, PRODUCTS AND TECHNOLOGIES, ICBMPT 2022, 2022, 2341
  • [28] Immobilization of cesium with alkali-activated blast furnace slag
    Komljenovic, M.
    Tanasijevic, G.
    Dzunuzovic, N.
    Provis, J. L.
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 388 (388)
  • [29] The Effect of Superabsorbent Polymers on Mechanical Characteristics and Cracking Susceptibility of Alkali-Activated Mortars Containing Ground Granulated Blast-Furnace Slag and Copper Slag
    MacLennan, Stewart
    Almeida, Fernando C. R.
    Klemm, Agnieszka J.
    CIVILENG, 2022, 3 (04): : 1077 - 1090
  • [30] Study on the properties of alkali-activated phosphorus slag mortar mixed with granulated blast furnace slag/fly ash
    Zhang, Yannian
    Wu, Qi
    Yang, Daokui
    Wang, Qingjie
    Qu, Zhifu
    Zhong, Yugang
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2024, 60 (04) : 1281 - 1291