Regularity of Solutions of the Nonlinear Sigma Model with Gravitino

被引:19
|
作者
Jost, Juergen [1 ]
Kessler, Enno [1 ]
Tolksdorf, Juergen [1 ]
Wu, Ruijun [1 ]
Zhu, Miaomiao [2 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22-26, D-04103 Leipzig, Germany
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Dongchuan Rd 800, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
DIRAC-HARMONIC MAPS;
D O I
10.1007/s00220-017-3001-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a geometric setup to study analytic aspects of a variant of the super symmetric two-dimensional nonlinear sigma model. This functional extends the functional of Dirac-harmonic maps by gravitino fields. The system of Euler-Lagrange equations of the two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino terms pose additional analytic difficulties to show smoothness of its weak solutions which are overcome using RiviSre's regularity theory and Riesz potential theory.
引用
收藏
页码:171 / 197
页数:27
相关论文
共 50 条
  • [41] Regularity of solutions of a phase field model
    Amler, T. G.
    Botkin, N. D.
    Hoffmann, K. -H.
    Ruf, K. A.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 10 (04) : 353 - 365
  • [42] STRING SOLUTIONS IN THE S2 NONLINEAR sigma -MODEL WITH A GAUGE FIELD.
    Rybakov, Yu.P.
    Khalder, A.K.
    Soviet physics journal, 1986, 29 (05): : 404 - 407
  • [43] CLASSICAL SOLUTIONS FOR A GENERALLY COVARIANT CP-2 NONLINEAR SIGMA-MODEL
    GAVA, E
    JENGO, R
    OMERO, C
    PERCACCI, R
    NUCLEAR PHYSICS B, 1979, 151 (03) : 457 - 468
  • [44] STRING SOLUTIONS IN S2 NONLINEAR SIGMA-MODEL WITH THE GAUGE FIELD
    RYBAKOV, YP
    KHALDER, AK
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1986, 29 (05): : 79 - 83
  • [45] CORRECT SOLUTIONS OF THE SO(3)-INVARIANT NONLINEAR SIGMA-MODEL IN SPECIAL RELATIVITY
    CHERVON, SV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1985, 28 (10): : 22 - 26
  • [46] REGULARITY OF SOLUTIONS OF FULLY NONLINEAR ELLIPTIC-EQUATIONS
    TRUDINGER, NS
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1984, 3A (03): : 421 - 430
  • [47] Regularity of weak solutions of nonlinear equations with discontinuous coefficients
    Ran, QK
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (04) : 705 - 714
  • [48] THE REGULARITY OF VISCOSITY SOLUTIONS FOR A CLASS OF FULLY NONLINEAR EQUATIONS
    董光昌
    边保军
    Science China Mathematics, 1991, (12) : 1448 - 1457
  • [49] REGULARITY AND SYMMETRY OF POSITIVE SOLUTIONS TO NONLINEAR INTEGRAL SYSTEMS
    Yao, Wanghe
    Chen, Xiaoli
    Yang, Jianfu
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [50] EXISTENCE AND REGULARITY OF WEAK SOLUTIONS OF NONLINEAR PARABOLIC INEQUALITY
    BEIRAODA.H
    DIAS, JP
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1973, 260 : 181 - 199