Modified Stacked Autoencoder Using Adaptive Morlet Wavelet for Intelligent Fault Diagnosis of Rotating Machinery

被引:154
|
作者
Shao, Haidong [1 ]
Xia, Min [2 ]
Wan, Jiafu [3 ]
de Silva, Clarence W. [4 ]
机构
[1] Hunan Univ, Coll Mech & Vehicle Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Univ Lancaster, Dept Engn, Lancaster LA1 4YW, England
[3] South China Univ Technol, Prov Key Lab Tech & Equipment Macromol Adv Mfg, Guangzhou 510640, Peoples R China
[4] Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1Z4, Canada
基金
中国国家自然科学基金;
关键词
Vibrations; Wavelet analysis; Fault diagnosis; Cost function; Wavelet transforms; Training; Neural networks; Adaptive Morlet wavelet; fruit fly optimization; intelligent fault diagnosis; modified stacked autoencoder (MSAE); nonnegative constraint; SPARSE AUTOENCODERS; NEURAL-NETWORK; CLASSIFICATION; ALGORITHM; SYSTEM;
D O I
10.1109/TMECH.2021.3058061
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intelligent fault diagnosis techniques play an important role in improving the abilities of automated monitoring, inference, and decision making for the repair and maintenance of machinery and processes. In this article, a modified stacked autoencoder (MSAE) that uses adaptive Morlet wavelet is proposed to automatically diagnose various fault types and severities of rotating machinery. First, the Morlet wavelet activation function is utilized to construct an MSAE to establish an accurate nonlinear mapping between the raw nonstationary vibration data and different fault states. Then, the nonnegative constraint is applied to enhance the cost function to improve sparsity performance and reconstruction quality. Finally, the fruit fly optimization algorithm is used to determine the adjustable parameters of the Morlet wavelet to flexibly match the characteristics of the analyzed data. The proposed method is used to analyze the raw vibration data collected from a sun gear unit and a roller bearing unit. Experimental results show that the proposed method is superior to other state-of-the-art methods.
引用
收藏
页码:24 / 33
页数:10
相关论文
共 50 条
  • [41] Fault diagnosis of rotating machinery based on wavelet transforms and Neural Network
    Roztocil, Jan
    Novak, Martin
    2010 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS, 2010, : 293 - 298
  • [42] Rotating machinery fault diagnosis based on wavelet fuzzy neural network
    Peng, B
    Liu, ZQ
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS II, 2005, 187 : 527 - 534
  • [43] Multiscale wavelet packetinspired convolutional network for fault diagnosis of rotating machinery
    Lu, Yixiang
    Qian, Dongsheng
    Zhu, De
    Sun, Dong
    Zhao, Dawei
    Gao, Qingwei
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (17): : 203 - 213
  • [44] A Study on Fault Diagnosis of Rotating Machinery Combined Wavelet Transform with VMD
    Zhou, Huan
    Wang, Hao
    2020 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING, 2020, 1626
  • [45] An Adaptive Harmonic Product Spectrum for Rotating Machinery Fault Diagnosis
    Yi, Cai
    Wang, Hao
    Zhou, Qiuyang
    Hu, Qiwei
    Zhou, Pengcheng
    Lin, Jianhui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [46] Adaptive demodulation extraction transform for fault diagnosis of rotating machinery
    Cui, Lingli
    Chen, Jiahui
    Liu, Dongdong
    Sun, Shuwen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
  • [47] AHWCN: An interpretable attention-guided hierarchical wavelet convolutional network for rotating machinery intelligent fault diagnosis
    Zeng, Tao
    Jiang, Hongkai
    Liu, Yunpeng
    Bai, Yan
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 272
  • [48] Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network
    Liang, Pengfei
    Deng, Chao
    Wu, Jun
    Yang, Zhixin
    MEASUREMENT, 2020, 159
  • [49] Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
    Lu, Chen
    Wang, Zhen-Ya
    Qin, Wei -Li
    Ma, Jian
    SIGNAL PROCESSING, 2017, 130 : 377 - 388
  • [50] Research on Intelligent Diagnosis for Equipment Fault of Rotary Machinery Based on Adaptive Wavelet Convolutional Capsule Network
    Sun, Yongtao
    Liu, Yan
    Zhao, Weiwen
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML 2024, 2024, : 314 - 317