Automated Deep Learning BLACK-BOX Attack for Multimedia P-BOX Security Assessment

被引:0
|
作者
Tolba, Zakaria [1 ]
Derdour, Makhlouf [2 ]
Ferrag, Mohamed Amine [3 ]
Muyeen, S. M. [4 ]
Benbouzid, Mohamed [5 ]
机构
[1] Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa 12022, Algeria
[2] Univ Oum El Bouaghi, Networks & Syst RSI Lab Annaba, Oum El Bouaghi 04000, Algeria
[3] Guelma Univ, Dept Comp Sci, Guelma 24000, Algeria
[4] Qatar Univ, Dept Elect Engn, Doha 2713, Qatar
[5] Univ Brest, UMR CNRS 6027, F-29238 Brest, France
关键词
Cryptanalysis; deep learning; convolution; deconvolution; plaintext; ciphertext; block cipher; P-Box; attack; IMAGE-SCRAMBLING ENCRYPTION; QUANTITATIVE CRYPTANALYSIS; PIXEL BIT; ALGORITHM; COMPRESSION; CIPHERS; VIDEO;
D O I
10.1109/ACCESS.2022.3204175
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Resistance to differential cryptanalysis is a fundamental security requirement for symmetric block ciphers, and recently, deep learning has attracted the interest of cryptography experts, particularly in the field of block cipher cryptanalysis, where the bulk of these studies are differential distinguisher based black-box attacks. This paper provides a deep learning-based decryptor for investigating the permutation primitives used in multimedia block cipher encryption algorithms.We aim to investigate how deep learning can be used to improve on previous classical works by employing ciphertext pair aspects to maximize information extraction with low-data constraints by using convolution neural network features to discover the correlation among permutable atoms to extract the plaintext from the ciphered text without any P-box expertise. The evaluation of testing methods has been conceptualized as a regression task in which neural networks are supervised using a variety of parameters such as variations between input and output, number of iterations, and P-box generation patterns. On the other hand, the transfer learning skills demonstrated in this study indicate that discovering suitable testing models from the ground is also achievable using our model with optimum prior cryptographic expertise, where we contribute the results of deep learning in the field of deep learning based differential cryptanalysis development.Various experiments were performed on discrete and continuous chaotic and non-chaotic permutation patterns, and the best-performing model had an MSE of 1.8217e(-0)(4) and an R-2 of 1, demonstrating the practicality of the suggested technique.
引用
收藏
页码:94019 / 94039
页数:21
相关论文
共 50 条
  • [21] Detection Tolerant Black-Box Adversarial Attack Against Automatic Modulation Classification With Deep Learning
    Qi, Peihan
    Jiang, Tao
    Wang, Lizhan
    Yuan, Xu
    Li, Zan
    IEEE TRANSACTIONS ON RELIABILITY, 2022, 71 (02) : 674 - 686
  • [22] Accelerate Black-Box Attack with White-Box Prior Knowledge
    Cai, Jinghui
    Wang, Boyang
    Wang, Xiangfeng
    Jin, Bo
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING, PT II, 2019, 11936 : 394 - 405
  • [23] DeepPayload: Black-box Backdoor Attack on Deep Learning Models through Neural Payload Injection
    Li, Yuanchun
    Hua, Liayi
    Wang, Haoyu
    Chen, Chunyang
    Liu, Yunxin
    2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2021), 2021, : 263 - 274
  • [24] Amora: Black-box Adversarial Morphing Attack
    Wang, Run
    Juefei-Xu, Felix
    Guo, Qing
    Huang, Yihao
    Xie, Xiaofei
    Ma, Lei
    Liu, Yang
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 1376 - 1385
  • [25] Adversarial Eigen Attack on Black-Box Models
    Zhou, Linjun
    Cui, Peng
    Zhang, Xingxuan
    Jiang, Yinan
    Yang, Shiqiang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15233 - 15241
  • [26] A black-Box adversarial attack for poisoning clustering
    Cina, Antonio Emanuele
    Torcinovich, Alessandro
    Pelillo, Marcello
    PATTERN RECOGNITION, 2022, 122
  • [27] Deep GUI: Black-box GUI Input Generation with Deep Learning
    YazdaniBanafsheDaragh, Faraz
    Malek, Sam
    2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING ASE 2021, 2021, : 905 - 916
  • [28] Black-box Adversarial Machine Learning Attack on Network Traffic Classification
    Usama, Muhammad
    Qayyum, Adnan
    Qadir, Junaid
    Al-Fuqaha, Ala
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 84 - 89
  • [29] Improved Adversarial Attack against Black-box Machine Learning Models
    Xu, Jiahui
    Wang, Chen
    Li, Tingting
    Xiang, Fengtao
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5907 - 5912
  • [30] Deep Reinforcement Learning for Black-box Testing of Android Apps
    Romdhana, Andrea
    Merlo, Alessio
    Ceccato, Mariano
    Tonella, Paolo
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2022, 31 (04)