Machine-Learning Model for Resistance/Relapse Prediction in Immune Thrombocytopenia Using Gut Microbiota and Function Signatures

被引:3
|
作者
Liu, Feng-Qi [1 ,2 ,3 ,4 ]
Chen, Qi [1 ,2 ,3 ,4 ]
Qu, Qingyuan [5 ,6 ]
Sun, Xueyan [7 ]
Huang, Qiu-Sha [7 ,8 ]
He, Yun [8 ]
Zhu, Xiaolu [7 ]
Wang, Chencong [6 ]
Fu, Hai-Xia [6 ,7 ,8 ]
Li, Yue-Ying [9 ,10 ]
Wang, Qian-fei [11 ,12 ,13 ]
Liu, Kai-Yan [7 ]
Zhang, Xiao-Hui [2 ,6 ,8 ]
机构
[1] Natl Clin Res Ctr Hematol Dis, Beijing, Peoples R China
[2] Peking Univ, Inst Hematol, Peoples Hosp, Beijing, Peoples R China
[3] Beijing Key Lab Hematopoiet Stem Cell Transplanta, Beijing, Peoples R China
[4] Peking Univ, Collaborat Innovat Ctr Hematol, Beijing, Peoples R China
[5] Beijing Key Lab Hematopoiet Stem Cell Transplanta, Beijing, Peoples R China
[6] Natl Clin Res Ctr Hematol Dis, Beijing, Peoples R China
[7] Peking Univ, Peoples Hosp, Beijing, Peoples R China
[8] Peking Univ, Collaborat Innovat Ctr Hematol, Beijing, Peoples R China
[9] Chinese Acad Sci, Beijing Inst Genom, Collaborat Innovat Ctr Genet & Dev, Key Lab Genom & Precis Med, Beijing, Peoples R China
[10] Chinese Acad Sci, Beijing Inst Genom, Collaborat Innovat Ctr Genet & Dev, CAS Key Lab Genom & Precis Med, Beijing, Peoples R China
[11] Univ Chinese Acad Sci, Beijing, Peoples R China
[12] Chinese Acad Sci, CAS Key Lab Genom & Precis Med, Collaborat Innovat Ctr Genet & Dev, Beijing Inst Gen,China Natl Ctr Bioinformat, Beijing, Peoples R China
[13] China Natl Ctr Bioinformat, Beijing, Peoples R China
关键词
D O I
10.1182/blood-2021-148987
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
18
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Enabling personalized perioperative risk prediction by using a machine-learning model based on preoperative data
    Martin Graeßner
    Bettina Jungwirth
    Elke Frank
    Stefan Josef Schaller
    Eberhard Kochs
    Kurt Ulm
    Manfred Blobner
    Bernhard Ulm
    Armin Horst Podtschaske
    Simone Maria Kagerbauer
    Scientific Reports, 13
  • [32] Machine-Learning Based Prediction Model for Prognosis of IgA Nephropathy Patients
    Park, Sehoon
    Koh, Eun Sil
    Baek, Chung Hee
    Kim, Yong Chul
    Lee, Jung Pyo
    Kim, Dong Ki
    Han, Seung Hyeok
    Chin, Ho Jun
    Joo, Kwon Wook
    Kim, Yon Su
    Lee, Hajeong
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 800 - 801
  • [33] A machine-learning model for prediction of Acinetobacter baumannii hospital acquired infection
    Neuman, Ido
    Shvartser, Leonid
    Teppler, Shmuel
    Friedman, Yehoshua
    Levine, Jacob J.
    Kagan, Ilya
    Bishara, Jihad
    Kushinir, Shiri
    Singer, Pierre
    PLOS ONE, 2024, 19 (12):
  • [34] A Novel Machine-Learning Model to Predict Early Relapse in Mantle Cell Lymphoma (MCL)
    Cabirta Touzon, Alba
    Mosquera Orgueira, Adrian
    Navarro Garces, Victor
    Abrisqueta, Pau
    Salcedo Pereda, Rodrigo A.
    Aliste Santos, Carlos
    Canelo Vilaseca, Marta
    Gomez Rosa, Marina
    Lopez Garcia, Alberto
    Garcia, Tomas
    De la Cruz Vicente, Fatima
    Sancho, Juan-Manuel
    Rios Herranz, Eduardo
    Cordoba, Raul
    Serna, Angel
    Iacoboni, Gloria
    Jimenez, Moraima
    Carpio, Cecilia
    Garcia, Cristina
    Gallur, Laura
    Castellvi, Josep
    Bosch, Francesc
    Marin Niebla, Ana
    BLOOD, 2023, 142
  • [35] CKD Progression Prediction in a Diverse US Population: A Machine-Learning Model
    Aoki, Joseph
    Kaya, Cihan
    Khalid, Omar
    Kothari, Tarush
    Silberman, Mark A.
    Skordis, Con
    Hughes, Jonathan
    Hussong, Jerry
    Salama, Mohamed E.
    KIDNEY MEDICINE, 2023, 5 (09)
  • [36] Prediction of prognosis in patients with systemic sclerosis based on a machine-learning model
    Zheng, Yan
    Jin, Wei
    Zheng, Zhaohui
    Zhang, Kui
    Jia, Junfeng
    Lei, Cong
    Wang, Weitao
    Zhu, Ping
    CLINICAL RHEUMATOLOGY, 2024, 43 (08) : 2573 - 2584
  • [37] Prospective Evaluation of a Machine-Learning Prediction Model for Missed Radiology Appointments
    Rothenberg, Steven
    Bame, Bill
    Herskovitz, Ed
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (06) : 1690 - 1693
  • [38] Prospective Evaluation of a Machine-Learning Prediction Model for Missed Radiology Appointments
    Rothenberg, Steven
    Bame, Bill
    Herskovitz, Ed
    CANCER MANAGEMENT AND RESEARCH, 2022, 14 : 1690 - 1693
  • [39] Prospective Evaluation of a Machine-Learning Prediction Model for Missed Radiology Appointments
    Steven Rothenberg
    Bill Bame
    Ed Herskovitz
    Journal of Digital Imaging, 2022, 35 (6) : 1690 - 1693
  • [40] Horizontal well flow rate prediction applying machine-learning model
    Piskunov, S. A.
    Davoodi, S. H.
    BULLETIN OF THE TOMSK POLYTECHNIC UNIVERSITY-GEO ASSETS ENGINEERING, 2024, 335 (05): : 118 - 130