Stage analysis and production evaluation for class III gas hydrate deposit by depressurization

被引:32
|
作者
Lu, Nu [1 ,2 ]
Hou, Jian [1 ,3 ]
Liu, Yongge [1 ,3 ]
Barrufet, Maria A. [2 ]
Ji, Yunkai [1 ,3 ]
Xia, Zhizeng [4 ]
Xu, Boyue [2 ]
机构
[1] China Univ Petr East China, Sch Petr Engn, 66 Changjiang West Rd, Qingdao 266580, Peoples R China
[2] Texas A&M Univ, Dept Petr Engn, College Stn, TX 77843 USA
[3] China Univ Petr East China, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[4] China Univ Petr, Shengli Coll, Dongying 257061, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Class III gas hydrate; Depressurization; Numerical simulation; Irreducible gas saturation; Stage division; Production evaluation; METHANE HYDRATE; THERMAL-STIMULATION; HORIZONTAL WELL; NANKAI TROUGH; RESERVOIR; DECOMPOSITION; ACCUMULATIONS; OPTIMIZATION; DISSOCIATION; SATURATION;
D O I
10.1016/j.energy.2018.09.184
中图分类号
O414.1 [热力学];
学科分类号
摘要
Natural gas hydrate is of wide distribution and great potential as clean energy. To improve the production performance, the production characteristics of class III gas hydrate are studied by numerical simulation method when initial gas saturation is below the irreducible gas saturation. Based on the gas production behavior, a quantitative method is developed using both the production data and deposit properties to analyze the production process. A new index is introduced to evaluate the energy utilization efficiency of production stages. Then the influencing factors are analyzed. The results indicate that production can be divided into four stages, including slow changing stage, rapid increasing stage, rapid decreasing stage and stable decreasing stage. The boundaries between stages are clearly defined. Compared with other production stages, the first stage has lower energy utilization efficiency. The ratio drop of energy consumed by this stage can enhance the accumulative gas production. The gas flow ability and draw down pressure impact the production stage and production performance. Optimization of related factors can improve the production performance. Hot fluid injection and fracturing should be considered when reservoir energy is low or gas flow ability is weak. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:501 / 511
页数:11
相关论文
共 50 条
  • [21] GEOMECHANICAL RESPONSES DURING GAS HYDRATE PRODUCTION INDUCED BY DEPRESSURIZATION
    Kim, Ah-Ram
    Cho, Gye-Chun
    Lee, Joo-Yong
    Kim, Se-Joon
    PROCEEDINGS OF THE ASME 35TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING , 2016, VOL 8, 2016,
  • [22] Evaluation of Methane Leakage during Marine Gas Hydrate Production by Depressurization and Hot Water Injection
    Shang, Shilong
    Gu, Lijuan
    Zhan, Linsen
    Zhang, Jiecheng
    Liu, Haotian
    Zhang, Yi
    Lu, Hailong
    ENERGY & FUELS, 2023, 37 (16) : 12058 - 12067
  • [24] Numerical Evaluation of Gas Hydrate Production Performance of the Depressurization and Backfilling with an In Situ Supplemental Heat Method
    Xu, Tao
    Zhang, Zhaobin
    Li, Shouding
    Li, Xiao
    Lu, Cheng
    ACS OMEGA, 2021, 6 (18): : 12274 - 12286
  • [25] The simulation of nature gas production from ocean gas hydrate reservoir by depressurization
    Bai YuHu
    Li QingPing
    Li XiangFang
    Du Yan
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2008, 51 (08): : 1272 - 1282
  • [26] The simulation of nature gas production from ocean gas hydrate reservoir by depressurization
    YuHu Bai
    QingPing Li
    XiangFang Li
    Yan Du
    Science in China Series E: Technological Sciences, 2008, 51
  • [27] NUMERICAL SIMULATION ON NATURAL GAS PRODUCTION FROM GAS HYDRATE DISSOCIATION BY DEPRESSURIZATION
    Yu, Tao
    Liu, Weiguo
    Zhao, Jiafei
    Song, Yongchen
    Liu, Yu
    PROCEEDINGS OF THE ASME 31ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2012, VOL 6, 2012, : 743 - 747
  • [28] The Experimental and Numerical Studies on Gas Production from Hydrate Reservoir by Depressurization
    Yuhu Bai
    Qingping Li
    Ying Zhao
    Xiangfang Li
    Yan Du
    Transport in Porous Media, 2009, 79 : 443 - 468
  • [29] The Experimental and Numerical Studies on Gas Production from Hydrate Reservoir by Depressurization
    Bai, Yuhu
    Li, Qingping
    Zhao, Ying
    Li, Xiangfang
    Du, Yan
    TRANSPORT IN POROUS MEDIA, 2009, 79 (03) : 443 - 468
  • [30] Evaluation of gas production from oceanic hydrate deposits by N2 sweep combined with depressurization
    Kan, Jing-Yu
    Yang, Jian-Hao
    Li, Zhi
    Xu, Zhen
    Li, Nan
    Chen, Guang-Jin
    FUEL, 2025, 389