Subdivision surfaces for scattered-data approximation

被引:0
|
作者
Bertram, M [1 ]
Hagen, H [1 ]
机构
[1] Univ Kaiserslautern, Dept Comp Sci, D-67653 Kaiserslautern, Germany
来源
关键词
multiresolution methods; scattered data; subdivision surfaces; terrain modeling; triangulation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a modified Loop subdivision surface scheme for the approximation of scattered data in the plane. Starting with a triangulated set of scattered data with associated function values, our scheme applies linear, stationary subdivision rules resulting in a hierarchy of triangulations that converge rapidly to a smooth limit surface. The novelty of our scheme is that it applies subdivision only to the ordinates of control points, whereas the triangulated mesh in the plane is fixed. Our subdivision scheme defines locally supported, bivariate basis functions and provides multiple levels of approximation with triangles. We use our subdivision scheme for terrain modeling.
引用
收藏
页码:55 / +
页数:10
相关论文
共 50 条
  • [21] Dynamic smooth subdivision surfaces for data visualization
    Mandal, C
    Qin, H
    Vemuri, BC
    VISUALIZATION '97 - PROCEEDINGS, 1997, : 371 - +
  • [22] Monotonicity preserving approximation of multivariate scattered data
    Beliakov, G
    BIT NUMERICAL MATHEMATICS, 2005, 45 (04) : 653 - 677
  • [23] Approximation by radial Shepard operators on scattered data
    Guoshun Wang
    Dansheng Yu
    Analysis and Mathematical Physics, 2022, 12
  • [24] Monotonicity Preserving Approximation of Multivariate Scattered Data
    G. Beliakov
    BIT Numerical Mathematics, 2005, 45 : 653 - 677
  • [25] Approximation by radial Shepard operators on scattered data
    Wang, Guoshun
    Yu, Dansheng
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (05)
  • [26] Scattered data approximation by neural networks operators
    Chen, Zhixiang
    Cao, Feilong
    NEUROCOMPUTING, 2016, 190 : 237 - 242
  • [27] Polynomial approximation on the sphere using scattered data
    Filbir, Frank
    Themistoclakis, W.
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (05) : 650 - 668
  • [28] Scattered manifold-valued data approximation
    Philipp Grohs
    Markus Sprecher
    Thomas Yu
    Numerische Mathematik, 2017, 135 : 987 - 1010
  • [29] Smooth surface interpolation to scattered data using interpolatory subdivision algorithms
    Qu, R
    Agarwal, RP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (03) : 93 - 110
  • [30] Scattered manifold-valued data approximation
    Grohs, Philipp
    Sprecher, Markus
    Yu, Thomas
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 987 - 1010