Subdivision surfaces for scattered-data approximation

被引:0
|
作者
Bertram, M [1 ]
Hagen, H [1 ]
机构
[1] Univ Kaiserslautern, Dept Comp Sci, D-67653 Kaiserslautern, Germany
来源
关键词
multiresolution methods; scattered data; subdivision surfaces; terrain modeling; triangulation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a modified Loop subdivision surface scheme for the approximation of scattered data in the plane. Starting with a triangulated set of scattered data with associated function values, our scheme applies linear, stationary subdivision rules resulting in a hierarchy of triangulations that converge rapidly to a smooth limit surface. The novelty of our scheme is that it applies subdivision only to the ordinates of control points, whereas the triangulated mesh in the plane is fixed. Our subdivision scheme defines locally supported, bivariate basis functions and provides multiple levels of approximation with triangles. We use our subdivision scheme for terrain modeling.
引用
收藏
页码:55 / +
页数:10
相关论文
共 50 条
  • [1] Optimization methods for scattered data approximation with subdivision surfaces
    Marinov, M
    Kobbelt, L
    GRAPHICAL MODELS, 2005, 67 (05) : 452 - 473
  • [2] Stability results for scattered-data interpolation on Euclidean spheres
    Narcowich, FJ
    Sivakumar, N
    Ward, JD
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 8 (03) : 137 - 163
  • [3] Efficient fitting and rendering of large scattered data sets using subdivision surfaces
    Scheib, V
    Haber, J
    Lin, MC
    Seidel, HP
    COMPUTER GRAPHICS FORUM, 2002, 21 (03) : 353 - +
  • [4] Offset approximation algorithm for Subdivision Surfaces
    Yang, Junqing
    Zhou, Min
    An, Xiaohong
    Zhang, Lining
    SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 3, PROCEEDINGS, 2007, : 216 - +
  • [5] Algorithm 761: Scattered-data surface fitting that has the accuracy of a cubic polynomial
    Akima, H
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (03): : 362 - 371
  • [6] Approximation of Loop Subdivision Surfaces for Fast Rendering
    Li, Guiqing
    Ren, Canjiang
    Zhang, Jiahua
    Ma, Weiyin
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (04) : 500 - 514
  • [7] Remark on algorithm 761: Scattered-data surface fitting that has the accuracy of a cubic polynomial
    De Tisi, F
    Valtulina, A
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2000, 26 (01): : 46 - 48
  • [8] Recent developments in error estimates for scattered-data interpolation via radial basis functions
    Francis J. Narcowich
    Numerical Algorithms, 2005, 39 : 307 - 315
  • [9] Recent developments in error estimates for scattered-data interpolation via radial basis functions
    Narcowich, FJ
    NUMERICAL ALGORITHMS, 2005, 39 (1-3) : 307 - 315
  • [10] Analytical investigations for the design of fast approximation methods for fitting curves and surfaces to scattered data
    Brakhage, Karl-Heinz
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 147 : 27 - 39