Vegetation degradation along water gradient leads to soil active organic carbon loss in Gahai wetland

被引:34
|
作者
Wu, Jiangqi [1 ]
Ma, Weiwei [1 ]
Li, Guang [1 ]
Alhassan, Abdul-Rauf M. [1 ]
Wang, Haiyan [1 ]
Chen, Guopeng [1 ]
机构
[1] Gansu Agr Univ, Coll Forestry, Lanzhou 730070, Peoples R China
关键词
Wet meadow wetland; Vegetation degradation; Soil organic carbon; Active organic carbon; Distribution and dynamic changes; QINGHAI-TIBET PLATEAU; CLIMATE-CHANGE; LAND-USE; DYNAMICS; MATTER; PEATLAND; EMISSIONS; QUALITY; SYSTEM; FLUXES;
D O I
10.1016/j.ecoleng.2019.105666
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Soil active organic carbon responds quickly to soil disturbances and is a sensitive indicator of early changes in soil organic carbon (SOC). In order to identify the differences in the distribution of dissolved organic carbon (DOC), light fraction organic carbon (LFOC), SOC and their changes as affected by vegetation degradation degree along water gradient in wetland, we analyzed DOC, LFOC, and SOC in the 0-100 cm soil layer under four vegetation degradation degrees: non-degradation (ND), lightly degradation (LD), moderately degradation (MD) and heavily degradation (HD). The results showed that soil DOC, LFOC and SOC in the 0-100 cm layer of ND wetland was significantly higher than the other three degradation levels. DOC, LFOC and SOC contents decreased with increasing soil depth under the four degradation degrees and the contents of soil DOC, LFOC and SOC were mainly concentrated in the soil surface (0-20 cm). The DOC, LFOC, and SOC contents in the 0-20 cm layer under all four degradation levels showed obvious seasonal changes, while the DOC, LFOC, and SOC contents in the 20-100 cm layer showed little fluctuation over the plant growing season. There was a significant positive correlation between soil DOC and SOC, and between LFOC and SOC, with correlation coefficients of 0.948 and 0.911, respectively. There was also a very significant correlation between DOC and LFOC(R-2 = 0.904). Soil DOC and LFOC in the 0-100 cm layer under the four degree of degradation were linearly correlated with SOC. While there was a linear correlation between DOC and LFOC in the non-degradation wetland soils, DOC and LFOC in the three degradation soils correlated exponentially correlated with SOC.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Dissolved Organic Carbon in Headwater Streams and Riparian Soil Organic Carbon along an Altitudinal Gradient in the Wuyi Mountains, China
    Huang, Wei
    McDowell, William H.
    Zou, Xiaoming
    Ruan, Honghua
    Wang, Jiashe
    Li, Liguang
    PLOS ONE, 2013, 8 (11):
  • [42] Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils
    Blonska, Ewa
    Lasota, Jaroslaw
    FORESTS, 2017, 8 (11):
  • [43] Soil organic carbon mineralization along an altitudinal gradient in a natural spruce forest, China
    Beijing Forestry University, Beijing, China
    不详
    Adv. J. Food Sci. Technol., 5 (337-342):
  • [44] Precipitation regulates soil organic carbon affected by shrub encroachment along the altitude gradient
    Liu, Li
    Zhao, Guang
    Yao, Daijun
    Zong, Ning
    He, Yunlong
    Wu, Wenchao
    Jiang, Qianxin
    Zhang, Yangjian
    CATENA, 2025, 249
  • [45] Distribution of Soil Organic Carbon Fractions Along the Altitudinal Gradient in Changbai Mountain,China
    ZHANG MinZHANG XiaoKeLIANG WenJuJIANG YongDAI GuanHuaWANG XuGao and HAN ShiJie State Key Laboratory of Forest and Soil EcologyInstitute of Applied EcologyChinese Academy of SciencesShenyang China Vegetable Research InstituteLiaoning Academy of Agricultural SciencesShenyang China Graduate University of Chinese Academy of SciencesBeijing China
    Pedosphere, 2011, 21 (05) : 615 - 620
  • [46] Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient
    Tian, Qiuxiang
    He, Hongbo
    Cheng, Weixin
    Bai, Zhen
    Wang, Yang
    Zhang, Xudong
    SCIENTIFIC REPORTS, 2016, 6
  • [47] Distribution of Soil Organic Carbon Fractions Along the Altitudinal Gradient in Changbai Mountain, China
    Zhang Min
    Zhang Xiao-Ke
    Liang Wen-Ju
    Jiang Yong
    Dai Guan-Hua
    Wang Xu-Gao
    Han Shi-Jie
    PEDOSPHERE, 2011, 21 (05) : 615 - 620
  • [49] Effect of land abandonment on soil organic carbon fractions along a Mediterranean precipitation gradient
    Gabarron-Galeote, Miguel A.
    Trigalet, Sylvain
    van Wesemael, Bas
    GEODERMA, 2015, 249 : 69 - 78
  • [50] Soil organic carbon along an altitudinal gradient in the Despenaperros Natural Park, southern Spain
    Parras-Alcantara, L.
    Lozano-Garcia, B.
    Galan-Espejo, A.
    SOLID EARTH, 2015, 6 (01) : 125 - 134