Homogenization of elasticity problems on periodic composite structures

被引:3
|
作者
Pastukhova, SE [1 ]
机构
[1] Tech Univ, Moscow Inst Radio Engn Elect & Automat, Moscow, Russia
关键词
D O I
10.1070/SM2005v196n07ABEH000947
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Elasticity problems on a plane plate reinforced with a thin periodic network or in a 3-dimensional body reinforced with a thin periodic box skeleton are considered. The composite medium depends on two parameters approaching zero and responsible for the periodicity cell and the thickness of the reinforcing structure. The parameters can be dependent or independent. For these problems Zhikov's method of 'two-scale convergence with variable measure' is used to derive the homogenization principle: the solution of the original problem reduces in a certain sense to the solution of the homogenized (or limiting) problem. The latter has a classical form. From the operator form of the homogenization principle, on the basis of tire compactness principle in the L-2-space, which is also established, one obtains for the composite structure the Hausdorff convergence of the spectrum of the original problem to the spectrum of the limiting problem.
引用
收藏
页码:1033 / 1073
页数:41
相关论文
共 50 条
  • [21] Periodic approximations of homogenization problems
    Pankov, Alexander
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (15) : 2018 - 2022
  • [22] KINETIC DECOMPOSITION FOR PERIODIC HOMOGENIZATION PROBLEMS
    Jabin, Pierre-Emmanuel
    Tzavaras, Athanasios E.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (01) : 360 - 390
  • [23] Homogenization of quasi-periodic structures
    Andrianov, Igor V.
    Awrejcewicz, Jan
    Diskovsky, Alexander A.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2006, 128 (04): : 532 - 534
  • [24] Multiscale homogenization for nearly periodic structures
    Yoshimura, Akinori
    Waas, Anthony M.
    Hirano, Yoshiyasu
    COMPOSITE STRUCTURES, 2016, 153 : 345 - 355
  • [25] Homogenization of vibrating periodic lattice structures
    Gonella, Stefano
    Ruzzene, Massimo
    APPLIED MATHEMATICAL MODELLING, 2008, 32 (04) : 459 - 482
  • [26] Homogenization of Periodic Structures Using the FEM
    Bardi, Istvan
    Tharp, Jefferson
    Petersson, Rickard
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 157 - 160
  • [27] Homogenization of vibrating periodic lattice structures
    Gonella, Stefano
    Ruzzene, Massimo
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2005, : 21 - 31
  • [28] HOMOGENIZATION AND DAMAGE FOR COMPOSITE STRUCTURES
    DEVRIES, F
    DUMONTET, H
    DUVAUT, G
    LENE, F
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 27 (02) : 285 - &
  • [29] Operator-Norm Convergence Estimates for Elliptic Homogenization Problems on Periodic Singular Structures
    Cherednichenko K.
    D’Onofrio S.
    Journal of Mathematical Sciences, 2018, 232 (4) : 558 - 572
  • [30] Computational homogenization in linear elasticity of peristatic periodic structure composites
    Buryachenko, Valeriy A.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (08) : 2497 - 2525