Perturbative finiteness in spin-foam quantum gravity

被引:51
|
作者
Crane, L [1 ]
Perez, A
Rovelli, C
机构
[1] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
[2] Inst Super Tecn, Lisbon, Portugal
[3] CPT, Marseille, France
关键词
D O I
10.1103/PhysRevLett.87.181301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lorentzian "normalized balanced state sum model" of quantum general relativity is finite on any nondegenerate triangulation. It provides a candidate for a background independent, perturbatively finite, quantum theory of general relativity in four dimensions and with Lorentzian signature.
引用
收藏
页码:181301 / 1
页数:4
相关论文
共 50 条
  • [41] Spin Foam Perturbation Theory for Three-Dimensional Quantum Gravity
    João Faria Martins
    Aleksandar Miković
    Communications in Mathematical Physics, 2009, 288 : 745 - 772
  • [42] Effective Spin Foam Models for Four-Dimensional Quantum Gravity
    Asante, Seth K.
    Dittrich, Bianca
    Haggard, Hal M.
    PHYSICAL REVIEW LETTERS, 2020, 125 (23)
  • [43] Spin Foam Perturbation Theory for Three-Dimensional Quantum Gravity
    Martins, Joao Faria
    Mikovic, Aleksandar
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (02) : 745 - 772
  • [44] Dynamics of loop quantum gravity and spin foam models in three dimensions
    Noui, K
    Perez, A
    QUANTUM THEORY AND SYMMETRIES, 2004, : 648 - 654
  • [45] Spin foam model for pure gauge theory coupled to quantum gravity
    Oriti, D
    Pfeiffer, H
    PHYSICAL REVIEW D, 2002, 66 (12)
  • [46] Perturbative quantum gravity on complex spacetime
    Faizal, Mir
    PHYSICS LETTERS B, 2011, 705 (1-2) : 120 - 123
  • [47] Gaugeon formalism for perturbative quantum gravity
    Sudhaker Upadhyay
    The European Physical Journal C, 2014, 74
  • [48] Perturbative quantum gravity with the Immirzi parameter
    Benedetti, Dario
    Speziale, Simone
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (06):
  • [49] Gaugeon formalism for perturbative quantum gravity
    Upadhyay, Sudhaker
    EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (02): : 1 - 5
  • [50] Finiteness and dual variables for Lorentzian spin foam models
    Cherrington, JW
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (03) : 701 - 719