On the forward algorithm for stopping problems on continuous-time Markov chains

被引:2
|
作者
Miclo, Laurent [1 ,2 ,3 ]
Villeneuve, Stephane [2 ,3 ]
机构
[1] CNRS, Paris, France
[2] Univ Toulouse, Toulouse, France
[3] Toulouse Sch Econ, 1 Esplanade Univ, F-31080 Toulouse 06, France
关键词
Forward algorithm; constrained optimal stopping; Markov chains; CONSTRUCTION; AMERICAN;
D O I
10.1017/jpr.2021.11
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We revisit the forward algorithm, developed by Irle, to characterize both the value function and the stopping set for a large class of optimal stopping problems on continuous-time Markov chains. Our objective is to renew interest in this constructive method by showing its usefulness in solving some constrained optimal stopping problems that have emerged recently.
引用
收藏
页码:1043 / 1063
页数:21
相关论文
共 50 条
  • [21] SIMILAR STATES IN CONTINUOUS-TIME MARKOV CHAINS
    Yap, V. B.
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (02) : 497 - 506
  • [22] Matrix Analysis for Continuous-Time Markov Chains
    Le, Hung, V
    Tsatsomeros, M. J.
    SPECIAL MATRICES, 2021, 10 (01): : 219 - 233
  • [23] Algorithmic Randomness in Continuous-Time Markov Chains
    Huang, Xiang
    Lutz, Jack H.
    Migunov, Andrei N.
    2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 615 - 622
  • [24] Path integrals for continuous-time Markov chains
    Pollett, PK
    Stefanov, VT
    JOURNAL OF APPLIED PROBABILITY, 2002, 39 (04) : 901 - 904
  • [25] Ergodic degrees for continuous-time Markov chains
    MAO YonghuaDepartment of Mathematics Beijing Normal University Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004 (02) : 161 - 174
  • [26] Convergence of Continuous-Time Imprecise Markov Chains
    De Bock, Jasper
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS (ISIPTA '15), 2015, : 337 - 337
  • [27] Maxentropic continuous-time homogeneous Markov chains☆
    Bolzern, Paolo
    Colaneri, Patrizio
    De Nicolao, Giuseppe
    AUTOMATICA, 2025, 175
  • [28] Ergodic degrees for continuous-time Markov chains
    Yonghua Mao
    Science in China Series A: Mathematics, 2004, 47 : 161 - 174
  • [29] On perturbation bounds for continuous-time Markov chains
    Zeifman, A. I.
    Korolev, V. Yu.
    STATISTICS & PROBABILITY LETTERS, 2014, 88 : 66 - 72
  • [30] Subgeometric ergodicity for continuous-time Markov chains
    Liu, Yuanyuan
    Zhang, Hanjun
    Zhao, Yiqiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) : 178 - 189