A detailed knowledge of coupling interactions among sulfuric acid (H2SO4), the hydroperoxyl radical (HOO center dot), and water molecules (H2O) is crucial for the better understanding of the uptake of HOO center dot radicals by sulfuric acid aerosols at different atmospheric humidities. In the present study, the equilibrium structures, binding energies, equilibrium distributions, and the nature of the coupling interactions in H2SO4 center dot center dot center dot HOO center dot center dot center dot center dot(H2O)(n) (n = 0 2) clusters have been systematically investigated at the B3LYP/6-311+ + G(3df,3pd) level of theory in combination with the atoms in molecules (AIM) theory, natural bond orbital (NBO) method, energy decomposition analyses, and ab initio molecular dynamics. Two binary, five ternary, and twelve tetramer clusters possessing multiple intermolecular H-bonds have been located on their potential energy surfaces. Two different modes for water molecules have been observed to influence the coupling interactions between H2SO4 and HOO center dot through the formations of intermolecular H-bonds with or without breaking the original intermolecular H-bonds in the binary H2SO4 center dot center dot center dot HOO center dot cluster. It was found that the introduction of one or two water molecules can efficiently enhance the interactions between H2SO4 and HOO center dot, implying the positive role of water molecules in the uptake of the HOO center dot radical by sulfuric acid aerosols. Additionally, the coupling interaction modes of the most stable clusters under study have been verified by the ab initio molecular dynamics.