Characterization of Atmospheric Turbulence Effects and their Mitigation Using Wavelet-Based Signal Processing

被引:8
|
作者
Pedireddi, Latsa Babu [1 ]
Srinivasan, Balaji [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Madras 600036, Tamil Nadu, India
关键词
Scintillation; beam wandering; wavelet; BERR;
D O I
10.1109/TCOMM.2010.06.090194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In free space optical communication links, the turbulent atmospheric channel causes fluctuations in both intensity and phase of the transmitted optical signal which degrades their performance. In order to make free space optical communications commercially viable, there is a need for characterizing the atmospheric effects on the received signal statistics, and possibly correcting for the signal degradation using physical optics principles and advanced real-time signal processing techniques. As part of this work, we have constructed an experimental free space optical link over 100 meters so as to characterize the effects of inner-scale and outer-scale turbulence effects, and used it as the platform for carrying out the above objectives. A key aspect of our work is the experimental determination of the individual contribution of scintillations and beam wandering to the received signal variance. We have proceeded to correlate such effects with atmospheric parameters with the aim of building a model through which the channel properties may be estimated based on a measurement of the atmospheric parameters. Such analysis has been carried out over a 24 hour period to include a full day-night cycle and also to consider the effect of temperature. In this paper, we have also investigated methods of reducing the atmospheric effects such as scintillations and beam wandering. Specifically, we have demonstrated reduced scintillation-related variance by aperture averaging technique, and reduced beam wandering-related variance using wavelet based signal processing. Through these techniques, we have demonstrated bit error rate (BER) reduction by a factor of 138 compared to the original signal for our experimental free space optical link.
引用
收藏
页码:1795 / 1802
页数:8
相关论文
共 50 条
  • [21] A new Bayesian model averaging framework for wavelet-based signal processing
    Wan, Y
    Nowak, RD
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 476 - 479
  • [22] Single Particle Detection Enhancement with Wavelet-based Signal Processing Technique
    Ganjalizadeh, V.
    Meena, G. G.
    Stott, M. A.
    Schmidt, H.
    Hawkins, A. R.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [23] Wavelet-Based Genomic Signal Processing for Centromere Identification and Hypothesis Generation
    Weighill, Deborah
    Macaya-Sanz, David
    DiFazio, Stephen Paul
    Joubert, Wayne
    Shah, Manesh
    Schmutz, Jeremy
    Sreedasyam, Avinash
    Tuskan, Gerald
    Jacobson, Daniel
    FRONTIERS IN GENETICS, 2019, 10
  • [24] ATMOSPHERIC TURBULENCE MITIGATION BASED ON TURBULENCE EXTRACTION
    He, Renjie
    Wang, Zhiyong
    Fan, Yangyu
    Feng, David
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1442 - 1446
  • [25] Analysis of Barkhausen noise using wavelet-based fractal signal processing for fatigue crack detection
    Miesowicz, Krzysztof
    Staszewski, Wieslaw J.
    Korbiel, Tomasz
    INTERNATIONAL JOURNAL OF FATIGUE, 2016, 83 : 109 - 116
  • [26] Renormalization of viscosity in wavelet-based model of turbulence
    Altaisky, M., V
    Hnatich, M.
    Kaputkina, N. E.
    PHYSICAL REVIEW E, 2018, 98 (03)
  • [27] Wavelet-based algorithm for signal analysis
    Tse, Norman C. F.
    Lai, L. L.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
  • [28] WAVELET-BASED METHODS FOR SIGNAL DENOISING
    Yaseen, Alauldeen S.
    Pavlov, Alexey N.
    2018 2ND SCHOOL ON DYNAMICS OF COMPLEX NETWORKS AND THEIR APPLICATION IN INTELLECTUAL ROBOTICS (DCNAIR), 2018, : 152 - 153
  • [29] Adaptive wavelet-based signal dejittering
    Testoni, Nicola
    Speciale, Nicolo
    Ridolfi, Andrea
    Pouzat, Christophe
    2007 PH.D RESEARCH IN MICROELECTRONICS AND ELECTRONICS, 2007, : 257 - +
  • [30] On uncertainty in wavelet-based signal analysis
    Peretto, L
    Sasdelli, R
    Tinarelli, R
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2005, 54 (04) : 1593 - 1599