Cloud condensation nuclei activity of isoprene secondary organic aerosol

被引:57
|
作者
Engelhart, Gabriella J. [1 ]
Moore, Richard H. [2 ]
Nenes, Athanasios [2 ,3 ]
Pandis, Spyros N. [1 ,4 ,5 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[4] Univ Patras, Dept Chem Engn, Patras, Greece
[5] Fdn Res & Technol, Inst Chem Engn & High Temp, Patras, Greece
基金
美国国家科学基金会;
关键词
DROPLET GROWTH-KINETICS; TROPICAL RAIN-FOREST; CCN ACTIVITY; MASS-SPECTROMETRY; ACTIVATION KINETICS; HYGROSCOPIC GROWTH; PHOTOOXIDATION; PARTICLES; SIZE; MODEL;
D O I
10.1029/2010JD014706
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This work explores the cloud condensation nuclei (CCN) activity of isoprene secondary organic aerosol (SOA), likely a significant source of global organic particulate matter and CCN, produced from the oxidation with OH from HONO/HOOH photolysis in a temperature-controlled SOA chamber. CCN concentrations, activation diameter, and droplet growth kinetic information were monitored as a function of supersaturation (from 0.3% to 1.5%) for several hours using a cylindrical continuous-flow streamwise thermal gradient CCN counter connected to a scanning mobility particle sizer. The initial SOA concentrations ranged from 2 to 30 mu g m(-3) and presented CCN activity similar to monoterpene SOA with an activation diameter of 35 nm for 1.5% supersaturation and 72 nm for 0.6% supersaturation. The CCN activity improved slightly in some experiments as the SOA aged chemically and did not depend significantly on the level of NOx during the SOA production. The measured activation diameters correspond to a hygroscopicity parameter kappa value of 0.12, similar to kappa values of 0.1 +/- 0.04 reported for monoterpene SOA. Analysis of the water-soluble carbon extracted from filter samples of the SOA suggest that it has a kappa of 0.2-0.3 implying an average molar mass between 90 and 150 g mol(-1) (assuming a zero and 5% surface tension reduction with respect to water, respectively). These findings are consistent with known oxidation products of isoprene. Using threshold droplet growth analysis, the CCN activation kinetics of isoprene SOA was determined to be similar to pure ammonium sulfate aerosol.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The cloud condensation nuclei (CCN) activity of anthropogenic aerosol particles
    Gagne, Erica F.
    Cross, Eben S.
    Wrobel, Billy
    Davidovits, Paul
    Lewis, David K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 202 - 202
  • [22] Relating cloud condensation nuclei activity and oxidation level of α-pinene secondary organic aerosols
    Frosch, M.
    Bilde, M.
    DeCarlo, P. F.
    Juranyi, Z.
    Tritscher, T.
    Dommen, J.
    Donahue, N. M.
    Gysel, M.
    Weingartner, E.
    Baltensperger, U.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [23] Contrasting Influence of Nitrogen Oxides on the Cloud Condensation Nuclei Activity of Monoterpene-Derived Secondary Organic Aerosol in Daytime and Nighttime Oxidation
    Zhang, Chenqi
    Guo, Yindong
    Shen, Hongru
    Luo, Hao
    Pullinen, Iida
    Schmitt, Sebastian H. H.
    Wang, Mingjin
    Fuchs, Hendrik
    Kiendler-Scharr, Astrid
    Wahner, Andreas
    Mentel, Thomas F. F.
    Zhao, Defeng
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (04)
  • [24] Aerosol Chemistry Resolved by Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei Activity to Organic Aerosol Composition
    Vogel, Alexander L.
    Schneider, Johannes
    Mueller-Tautges, Christina
    Phillips, Gavin J.
    Poehlker, Mira L.
    Rose, Diana
    Zuth, Christoph
    Makkonen, Ulla
    Hakola, Hannele
    Crowley, John N.
    Andreae, Meinrat O.
    Poeschl, Ulrich
    Hoffmann, Thorsten
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (20) : 10823 - 10832
  • [25] Isoprene forms secondary organic aerosol through cloud processing: Model simulations
    Lim, HJ
    Carlton, AG
    Turpin, BJ
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (12) : 4441 - 4446
  • [26] Measurements of surface cloud condensation nuclei and aerosol activity in downtown Shanghai
    Leng, Chunpeng
    Cheng, Tiantao
    Chen, Jianmin
    Zhang, Renjian
    Tao, Jun
    Huang, Guanghan
    Zha, Shuping
    Zhang, Meigen
    Fang, Wen
    Li, Xiang
    Li, Ling
    ATMOSPHERIC ENVIRONMENT, 2013, 69 : 354 - 361
  • [27] Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations
    Fierce, Laura
    McGraw, Robert L.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (18) : 9867 - 9878
  • [28] Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations
    Riipinen, I.
    Pierce, J. R.
    Yli-Juuti, T.
    Nieminen, T.
    Hakkinen, S.
    Ehn, M.
    Junninen, H.
    Lehtipalo, K.
    Petaja, T.
    Slowik, J.
    Chang, R.
    Shantz, N. C.
    Abbatt, J.
    Leaitch, W. R.
    Kerminen, V. -M.
    Worsnop, D. R.
    Pandis, S. N.
    Donahue, N. M.
    Kulmala, M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (08) : 3865 - 3878
  • [29] Cloud condensation nucleus activation properties of biogenic secondary organic aerosol
    VanReken, TM
    Ng, NL
    Flagan, RC
    Seinfeld, JH
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D7) : 1 - 9
  • [30] The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol
    Cruz, CN
    Pandis, SN
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D11) : 13111 - 13123