Nonparametric confidence intervals and tolerance limits based on minima and maxima

被引:3
|
作者
Razmkhah, M. [1 ]
Ahmadi, J. [1 ]
Khatib, B. [1 ]
机构
[1] Ferdowsi Univ Mashhad, Sch Math Sci, Mashhad, Iran
关键词
coverage probability; multisampling plan; order statistics; proportional hazard model; record values;
D O I
10.1080/03610920801893897
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-i,X-j (1 <= i <= k, 1 <= j <= n(i)) be independent random variables and for a fixed i, X-i,X-j's, (1 <= j <= n(i)) be identically distributed random variables with survival function (F) over bar (i) = (F) over bar (alpha i), where alpha(i) is a known positive constant. Also, suppose M-i and M-i', respectively, denote the maximum and minimum of the ith sample. This article investigates the nonparametric confidence intervals for an arbitrary quantile of the distribution F and tolerance limits based on these statistics. Various cases have been studied and in each case, the nonparametric confidence intervals are obtained and exact expressions for the confidence coefficients of these confidence intervals are derived. A data set representing the time of successive failures of the air conditioning system on Boeing 720 jet aircraft is used to illustrate the results. Finally, the accuracy of the proposed procedure has been investigated, when alpha(i)'s are unknown via a simulation study.
引用
收藏
页码:1525 / 1542
页数:18
相关论文
共 50 条
  • [21] Nonparametric Differentially Private Confidence Intervals for the Median
    Drechsler, Joerg
    Globus-Harris, Ira
    Mcmillan, Audra
    Sarathy, Jayshree
    Smith, Adam
    JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2022, 10 (03) : 804 - 829
  • [22] NONPARAMETRIC CONFIDENCE-INTERVALS FOR A SHIFT PARAMETER
    LEHMANN, EL
    ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (04): : 1507 - &
  • [23] Nonparametric confidence intervals for ranked set samples
    Ghosh, Santu
    Chatterjee, Arpita
    Balakrishnan, N.
    COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1689 - 1725
  • [24] Exponential confidence intervals in nonparametric density estimation
    Bagdasarov, DR
    Ostrovskii, EI
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1998, 42 (04) : 684 - 688
  • [25] ON BOOTSTRAP CONFIDENCE-INTERVALS IN NONPARAMETRIC REGRESSION
    HALL, P
    ANNALS OF STATISTICS, 1992, 20 (02): : 695 - 711
  • [26] Confidence Intervals for Nonparametric Empirical Bayes Analysis
    Ignatiadis, Nikolaos
    Wager, Stefan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1149 - 1166
  • [27] NEW NONPARAMETRIC CONFIDENCE INTERVALS FOR THE YOUDEN INDEX
    Zhou, Haochuan
    Qin, Gengsheng
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2012, 22 (06) : 1244 - 1257
  • [28] Simple and honest confidence intervals in nonparametric regression
    Armstrong, Timothy B.
    Kolesar, Michal
    QUANTITATIVE ECONOMICS, 2020, 11 (01) : 1 - 39
  • [29] Confidence intervals for quantiles and tolerance intervals based on ordered ranked set samples
    Balakrishnan, N.
    Li, T.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2006, 58 (04) : 757 - 777
  • [30] Confidence Intervals for Quantiles and Tolerance Intervals Based on Ordered Ranked Set Samples
    N. Balakrishnan
    T. Li
    Annals of the Institute of Statistical Mathematics, 2006, 58 : 757 - 777