Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant

被引:13
|
作者
Jiang, Jie [1 ]
Wu, Hao [2 ,3 ]
Zheng, Songmu [2 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotaxis; Classical solutions; Blow-up criterion; Blow-up rate; CHEMOTAXIS-STOKES SYSTEM; GLOBAL EXISTENCE; NONLINEAR DIFFUSION; EVENTUAL SMOOTHNESS; BOUNDEDNESS; BEHAVIOR; STABILIZATION; EQUATIONS; DECAY;
D O I
10.1016/j.jde.2018.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate blow-up properties for the initial-boundary value problem of a Keller-Segel model with consumption of chemoattractant when the spatial dimension is three. Through a kinetic reformulation of the Keller-Segel system, we first derive some higher-order estimates and obtain certain blow-up criteria for the local classical solutions. These blow-up criteria generalize the results in [4,5] from the whole space R-3 to the case of bounded smooth domain Omega subset of R-3. Lower global blow-up estimate on parallel to n parallel to (infinity)(L)((Omega)) is also obtained based on our higher-order estimates. Moreover, we prove local non-degeneracy for blow-up points. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:5432 / 5464
页数:33
相关论文
共 50 条
  • [31] Blow-up behavior of solutions to a degenerate parabolic-parabolic Keller-Segel system
    Ishige, Kazuhiro
    Laurencot, Philippe
    Mizoguchi, Noriko
    MATHEMATISCHE ANNALEN, 2017, 367 (1-2) : 461 - 499
  • [32] Global existence versus blow-up in a high dimensional Keller-Segel equation with degenerate diffusion and nonlocal aggregation
    Hong, Liang
    Wang, Wei
    Zheng, Sining
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 116 : 1 - 18
  • [33] CROSS DIFFUSION PREVENTING BLOW-UP IN THE TWO-DIMENSIONAL KELLER-SEGEL MODEL (vol 43, pg 997, 2011)
    Braukhoff, Marcel
    Chen, Xiuqing
    Juengel, Ansgar
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 2198 - 2200
  • [34] Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system
    Winkler, Michael
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (05): : 748 - 767
  • [35] CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER-SEGEL MODEL
    Antonio Carrillo, Jose
    Hittmeir, Sabine
    Juengel, Ansgar
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (12):
  • [36] On the existence of radially symmetric blow-up solutions for the Keller–Segel model
    Dirk Horstmann
    Journal of Mathematical Biology, 2002, 44 : 463 - 478
  • [37] FINITE-TIME BLOW-UP IN THE CAUCHY PROBLEM OF A KELLER-SEGEL SYSTEM WITH LOGISTIC SOURCE
    Liu, Mengqi
    Wang, Yulan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (10): : 5396 - 5417
  • [38] FRACTIONAL KELLER-SEGEL EQUATION: GLOBAL WELL-POSEDNESS AND FINITE TIME BLOW-UP
    Lafleche, Laurent
    Salem, Samir
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (08) : 2055 - 2087
  • [39] BLOW-UP OF SOLUTIONS TO SEMI-DISCRETE PARABOLIC-ELLIPTIC KELLER-SEGEL MODELS
    Juengel, Ansgar
    Leingang, Oliver
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (09): : 4755 - 4782
  • [40] ASYMPTOTIC PROFILE OF BLOW-UP SOLUTIONS OF KELLER-SEGEL SYSTEMS IN SUPER-CRITICAL CASES
    Sugiyama, Yoshie
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2010, 23 (7-8) : 601 - 618