The thickness of graphs: A survey

被引:63
|
作者
Mutzel, P
Odenthal, T
Scharbrodt, M
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
[2] Columbia Univ, IEOR Dept, New York, NY 10027 USA
[3] Tech Univ Munich, Lehrstuhl Brauereianlagen & Lebensmittel Verpacku, D-85350 Freising Weihenstephan, Germany
关键词
thickness; maximum planar subgraph; branch and cut;
D O I
10.1007/PL00007219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a state-of-the-art survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a basic heuristic and investigate their usefulness for evaluating the thickness and determining a decomposition of a graph in planar subgraphs.
引用
收藏
页码:59 / 73
页数:15
相关论文
共 50 条
  • [11] The thickness of the complete multipartite graphs and the join of graphs
    Yichao Chen
    Yan Yang
    Journal of Combinatorial Optimization, 2017, 34 : 194 - 202
  • [12] The thickness of the Kronecker product of graphs
    Guo, Xia
    Yang, Yan
    ARS MATHEMATICA CONTEMPORANEA, 2020, 18 (02) : 339 - 357
  • [13] On the Planar Split Thickness of Graphs
    Eppstein, David
    Kindermann, Philipp
    Kobourov, Stephen
    Liotta, Giuseppe
    Lubiw, Anna
    Maignan, Aude
    Mondal, Debajyoti
    Vosoughpour, Hamideh
    Whitesides, Sue
    Wismath, Stephen
    ALGORITHMICA, 2018, 80 (03) : 977 - 994
  • [14] Geometric thickness of complete graphs
    Dillencourt, MB
    Eppstein, D
    Hirschberg, DS
    GRAPH DRAWING, 1998, 1547 : 102 - 110
  • [15] ON THE THICKNESS OF GRAPHS OF GIVEN DEGREE
    HALTON, JH
    INFORMATION SCIENCES, 1991, 54 (03) : 219 - 238
  • [16] On the Planar Split Thickness of Graphs
    David Eppstein
    Philipp Kindermann
    Stephen Kobourov
    Giuseppe Liotta
    Anna Lubiw
    Aude Maignan
    Debajyoti Mondal
    Hamideh Vosoughpour
    Sue Whitesides
    Stephen Wismath
    Algorithmica, 2018, 80 : 977 - 994
  • [17] Thickness and colorability of geometric graphs
    Durocher, Stephane
    Gethner, Ellen
    Mondal, Debajyoti
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2016, 56 : 1 - 18
  • [18] THE BOOK THICKNESS OF NILPOTENT GRAPHS
    Kalaimurugan, G.
    Vignesh, P.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (01) : 127 - 132
  • [19] Thickness and Colorability of Geometric Graphs
    Durocher, Stephane
    Gethner, Ellen
    Mondal, Debajyoti
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2013, 2013, 8165 : 237 - 248
  • [20] GRAPHS WITH SMALL BOOK THICKNESS
    Overbay, Shannon
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2007, 19 (02) : 121 - 130