Machine Learning based quality prediction for milling processes using internal machine tool data

被引:22
|
作者
Fertig, A. [1 ]
Weigold, M. [1 ]
Chen, Y. [1 ]
机构
[1] Tech Univ Darmstadt, Inst Prod Management, Technol & Machine Tools PTW, Otto Berndt Str 2, D-64287 Darmstadt, Germany
关键词
Machine Learning; Milling; Quality prediction; Time series slicing; Machine tool data; ACOUSTIC-EMISSION SIGNALS; FUZZY INFERENCE SYSTEM; SURFACE-ROUGHNESS; MODEL; MALFUNCTIONS; ACCURACY; ERROR;
D O I
10.1016/j.aime.2022.100074
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine tools are increasingly being equipped with edge computing solutions to record internal drive signals with high frequency. A large amount of available data may be used to develop new data-driven approaches to process optimization and quality monitoring. This paper presents a new approach to predict the quality of finished workpieces for three-axis milling processes with end mills. For this purpose, internal machine tool data provided by an edge computing solution was recorded and used to develop a Machine Learning based method for quality prediction. For the preparation of the data, an introduced domain knowledge-based slicing algorithm is applied, which allows the recorded data to be automatically and precisely assigned to the corresponding geometric elements on the workpiece. During data-driven modeling, 9 Machine Learning algorithms are compared to 4 Deep Learning architectures for multivariate time series classification. The results show that ensemble methods like Random Forest and Extra Trees as well as the Deep Learning algorithms InceptionTime and ResNet reach the best performances for the use case of data-based quality prediction.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Prediction of cutting force in milling process using vibration signals of machine tool
    Zhou, Ji
    Mao, Xinyong
    Liu, Hongqi
    Li, Bin
    Peng, Yili
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 99 (1-4): : 965 - 984
  • [42] Genotype Imputation Quality Prediction using Machine Learning
    Kunji, Khalid
    Saad, Mohamad
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 528 - 528
  • [43] Water quality prediction using machine learning methods
    Haghiabi, Amir Hamzeh
    Nasrolahi, Ali Heidar
    Parsaie, Abbas
    WATER QUALITY RESEARCH JOURNAL OF CANADA, 2018, 53 (01): : 3 - 13
  • [44] Software Quality Prediction Using Machine Learning Application
    Naiyer, Vaseem
    Sheetlani, Jitendra
    Singh, Harsh Pratap
    SMART INTELLIGENT COMPUTING AND APPLICATIONS, VOL 2, 2020, 160 : 319 - 327
  • [45] Prediction of milling performance of thermally modified wood based on machine learning
    Huang, Wenlan
    Chen, Haiyang
    Jin, Qingyang
    Shi, Jiawen
    Guo, Xiaolei
    Na, Bin
    EUROPEAN JOURNAL OF WOOD AND WOOD PRODUCTS, 2025, 83 (02)
  • [46] Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review
    Iskandaryan, Ditsuhi
    Ramos, Francisco
    Trilles, Sergio
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [47] Air Quality Class Prediction Using Machine Learning Methods Based on Monitoring Data and Secondary Modeling
    Liu, Qian
    Cui, Bingyan
    Liu, Zhen
    ATMOSPHERE, 2024, 15 (05)
  • [48] Multivariate time series data of milling processes with varying tool wear and machine tools
    Denkena, Berend
    Klemme, Heinrich
    Stiehl, Tobias H.
    DATA IN BRIEF, 2023, 50
  • [49] Tool Wear Prediction in Computer Numerical Control Milling Operations via Machine Learning
    Shurrab, Saeed
    Almshnanah, Abdulkarem
    Duwairi, Rehab
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 220 - 227
  • [50] Research of Quality Prediction Based on Extreme Learning Machine
    Yang Yinghua
    Song Zeping
    Liu Xiaozhi
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1943 - 1947