High-speed broadband Fourier-transform coherent anti-stokes Raman scattering spectral microscopy

被引:22
|
作者
Kinegawa, Ryo [1 ]
Hiramatsu, Kotaro [1 ,2 ]
Hashimoto, Kazuki [3 ]
Badarla, Venkata Ramaiah [3 ]
Ideguchi, Takuro [3 ]
Goda, Keisuke [1 ,4 ]
机构
[1] Univ Tokyo, Dept Chem, Tokyo, Japan
[2] Univ Tokyo, Sch Sci, Res Ctr Spectrochem, Tokyo 1130033, Japan
[3] Univ Tokyo, Dept Phys, Tokyo, Japan
[4] Japan Sci & Technol Agcy, Saitama, Japan
基金
日本学术振兴会;
关键词
coherent anti-Stokes Raman scattering; microalgae; Raman spectral imaging; rapid imaging; time-domain Raman spectroscopy; MAXIMUM-ENTROPY; CARS SPECTROSCOPY; LIGHT;
D O I
10.1002/jrs.5630
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
We demonstrate broadband Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectral microscopy with a pixel dwell time of 42 mu s, which is ~50 times shorter than the shortest-to-date pixel dwell time for CARS spectral microscopy. Our broadband FT-CARS spectral microscope is composed of an FT-CARS spectrometer, a rapid galvanometric scanner, and a high-speed image acquisition circuit, enabling a frame rate of 2.4 fps with a pixel resolution of 100 x 100 pixels, a bandwidth of 600-1,200 cm(-1), a spatial resolution of 0.95 mu m, and a spectral resolution of 37 cm(-1). As a proof-of-principle demonstration, we used the high-speed FT-CARS spectral microscope to perform CARS imaging of polymer beads and Haematococcus lacustris cells. Our high-speed broadband CARS spectral microscope holds promise for studying rapid cellular dynamics, such as signaling, cell-to-cell communication, and molecular transport in a label-free manner.
引用
收藏
页码:1141 / 1146
页数:6
相关论文
共 50 条
  • [31] Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy
    El-Diasty, Fouad
    VIBRATIONAL SPECTROSCOPY, 2011, 55 (01) : 1 - 37
  • [32] Spatial-spectral coupling in coherent anti-Stokes Raman scattering microscopy
    Barlow, Aaron M.
    Popov, Konstantin
    Andreana, Marco
    Moffatt, Douglas J.
    Ridsdale, Andrew
    Slepkov, Aaron D.
    Harden, James L.
    Ramunno, Lora
    Stolow, Albert
    OPTICS EXPRESS, 2013, 21 (13): : 15298 - 15307
  • [33] Biological imaging using broadband Coherent anti-Stokes Raman Scattering (CARS) microscopy
    Kee, TW
    Cicerone, MT
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 362A - 362A
  • [34] Broadband coherent anti-Stokes Raman scattering for crystalline materials
    Hempel, Franz
    Reitzig, Sven
    Ruesing, Michael
    Eng, Lukas M.
    PHYSICAL REVIEW B, 2021, 104 (22)
  • [35] Highly sensitive Fourier-transform coherent anti-Stokes Raman scattering spectroscopy via genetic algorithm pulse shaping
    Lindley, Matthew
    Gala de Pablo, Julia
    Kinegawa, Ryo
    Hiramatsu, Kotaro
    Goda, Keisuke
    OPTICS LETTERS, 2021, 46 (17) : 4320 - 4323
  • [36] Coherent Anti-Stokes Raman Scattering Microscopy for High Speed Non-Staining Biomolecular Imaging
    Hashimoto, Mamoru
    Minamikawa, Takeo
    Araki, Tsutomu
    CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2013, 14 (02) : 150 - 158
  • [37] Chirped coherent anti-Stokes Raman scattering as a high-spectral- and spatial-resolution microscopy
    Onorato, Robert M.
    Muraki, Naoki
    Knutsen, Kelly P.
    Saykally, Richard J.
    OPTICS LETTERS, 2007, 32 (19) : 2858 - 2860
  • [38] Heterodyne polarization coherent anti-Stokes Raman scattering microscopy
    Lu, Fake
    Zheng, Wei
    Huang, Zhiwei
    APPLIED PHYSICS LETTERS, 2008, 92 (12)
  • [39] Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds
    Iestyn Pope
    Lukas Payne
    George Zoriniants
    Evan Thomas
    Oliver Williams
    Peter Watson
    Wolfgang Langbein
    Paola Borri
    Nature Nanotechnology, 2014, 9 : 940 - 946
  • [40] Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy
    Fu, Y
    Wang, HF
    Shi, RY
    Cheng, JX
    OPTICS EXPRESS, 2006, 14 (09): : 3942 - 3951