Opposition-based multi-objective whale optimization algorithm with multi-leader guiding

被引:7
|
作者
Li, Yang [1 ]
Li, Wei-gang [1 ]
Zhao, Yun-tao [1 ]
Liu, Ao [2 ]
机构
[1] Minist Educ, Engn Res Ctr Met Automat & Measurement Technol, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Evergrande Management, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective optimization problems; Whale optimization algorithm; Multi-leader guiding; Opposition-based learning strategy; DIFFERENTIAL EVOLUTION; OBJECTIVES; DIVERSITY;
D O I
10.1007/s00500-021-06390-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
During recent decades, evolutionary algorithms have been widely studied in optimization problems. The multi-objective whale optimization algorithm based on multi-leader guiding is proposed in this paper, which attempts to offer a proper framework to apply whale optimization algorithm and other swarm intelligence algorithms to solving multi-objective optimization problems. The proposed algorithm adopts several improvements to enhance optimization performance. First, search agents are classified into leadership set and ordinary set by grid mechanism, and multiple leadership solutions guide the population to search the sparse spaces to achieve more homogeneous exploration in per iteration. Second, the differential evolution and whale optimization algorithm are employed to generate the offspring for the leadership and ordinary solutions, respectively. In addition, a novel opposition-based learning strategy is developed to improve the distribution of the initial population. The performance of the proposed algorithm is verified in contrast to 10 classic or state-of-the-arts algorithms on 20 bi-objective and tri-objective unconstrained problems, and experimental results demonstrate the competitive advantages in optimization quality and convergence speed. Moreover, it is tested on load distribution of hot rolling, and the result proves its good performance in real-world applications. Thus, all of the aforementioned experiments have indicated that the proposed algorithm is comparatively effective and efficient.
引用
收藏
页码:15131 / 15161
页数:31
相关论文
共 50 条
  • [21] A novel multi-objective memetic algorithm based on opposition-based self-adaptive differential evolution
    Chong, J. K.
    MEMETIC COMPUTING, 2016, 8 (02) : 147 - 165
  • [22] Multi-objective whale optimization algorithm for content-based image retrieval
    Mohamed Abd El Aziz
    Ahmed A. Ewees
    Aboul Ella Hassanien
    Multimedia Tools and Applications, 2018, 77 : 26135 - 26172
  • [23] Multi-objective whale optimization algorithm for content-based image retrieval
    Abd El Aziz, Mohamed
    Ewees, Ahmed A.
    Hassanien, Aboul Ella
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (19) : 26135 - 26172
  • [24] A Multi-Objective Optimal Vehicle Fuel Consumption Based on Whale Optimization Algorithm
    Horng, Mong-Fong
    Thi-Kien Dao
    Shieh, Chin-Shiuh
    Trong-The Nguyen
    ADVANCES IN INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, VOL 2, 2017, 64 : 371 - 380
  • [25] Multi-objective constrained differential evolution using generalized opposition-based learning
    Wei W.
    Wang J.
    Tao M.
    Yuan H.
    1600, Science Press (53): : 1410 - 1421
  • [26] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [27] Enhancing Multi-Objective Optimization: A Decomposition-Based Approach Using the Whale Optimization Algorithm
    Ramos-Frutos, Jorge
    Casas-Ordaz, Angel
    Zapotecas-Martinez, Saul
    Oliva, Diego
    Valdivia-Gonzalez, Arturo
    Garcia-Najera, Abel
    Perez-Cisneros, Marco
    MATHEMATICS, 2025, 13 (05)
  • [28] A pareto-based hybrid whale optimization algorithm with tabu search for multi-objective optimization
    AbdelAziz A.M.
    Soliman T.H.A.
    Ghany K.K.A.
    Sewisy A.A.E.-M.
    Algorithms, 2019, 12 (02):
  • [29] Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection
    Yang, Deng
    Zhou, Chong
    Wei, Xuemeng
    Chen, Zhikun
    Zhang, Zheng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (02): : 1563 - 1593
  • [30] A Pareto-Based Hybrid Whale Optimization Algorithm with Tabu Search for Multi-Objective Optimization
    AbdelAziz, Amr Mohamed
    Soliman, Taysir Hassan A.
    Ghany, Kareem Kamal A.
    Sewisy, Adel Abu El-Magd
    ALGORITHMS, 2019, 12 (12)