On the Diophantine equation x2+3a41b = yn

被引:0
|
作者
Alan, Murat [1 ]
Zengin, Ugur [1 ]
机构
[1] Yildiz Tech Univ, Fac Arts & Sci, Dept Math, Davutpasa Campus, TR-34210 Istanbul, Turkey
关键词
Diophantine equations; Ramanujan-Nagell equations; Primitive divisor theorem; X(2)+2(A);
D O I
10.1007/s10998-020-00321-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we find all positive integer solutions (x, y, n, a, b) of the equation in the title for non negative integers a and b under the condition that the integers x and y are relatively prime and n >= 3.
引用
收藏
页码:284 / 291
页数:8
相关论文
共 50 条
  • [21] On the Diophantine equation x2+5m = yn
    Tao, Liqun
    RAMANUJAN JOURNAL, 2009, 19 (03): : 325 - 338
  • [22] The diophantine equation x2+q2k=yn
    Abu Muriefah, FS
    Arif, SA
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2001, 26 (1A): : 53 - 62
  • [23] ON THE DIOPHANTINE EQUATION x2 + C=2yn
    Abu Muriefah, Fadwa S.
    Luca, Florian
    Siksek, Samir
    Tengely, Szabolcs
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (06) : 1117 - 1128
  • [24] On the diophantine equation x2+2α5β13γ=yn
    Goins, Edray
    Luca, Florian
    Togbe, Alain
    ALGORITHMIC NUMBER THEORY, 2008, 5011 : 430 - +
  • [25] On the exponential Diophantine equation x2+2a pb = yn
    Zhu, Huilin
    Le, Maohua
    Soydan, Gokhan
    Togbe, Alain
    PERIODICA MATHEMATICA HUNGARICA, 2015, 70 (02) : 233 - 247
  • [26] The diophantine equation x2+52k+1 = yn
    Abu Muriefah, FS
    Arif, SA
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1999, 30 (03): : 229 - 231
  • [27] On the diophantine equation x2+q2k+1=yn
    Arif, SA
    Abu Muriefah, FS
    JOURNAL OF NUMBER THEORY, 2002, 95 (01) : 95 - 100
  • [28] On the diophantine equation x2 + p2k = yn
    Attila Bérczes
    István Pink
    Archiv der Mathematik, 2008, 91 : 505 - 517
  • [29] On the diophantine equation x2 + p2k = yn
    Berczes, Attila
    Pink, Istvan
    ARCHIV DER MATHEMATIK, 2008, 91 (06) : 505 - 517
  • [30] ON THE DIOPHANTINE EQUATIONS x2+2α3β19γ = yn AND x2+2α3β13γ = yn
    Ghadermarzi, Amir
    MATHEMATICA SLOVACA, 2019, 69 (03) : 507 - 520