The GMRES solver for the interpolating meshless local Petrov-Galerkin method applied to heat conduction

被引:5
|
作者
Singh, Abhishek Kumar [1 ]
Singh, Krishna Mohan [1 ]
机构
[1] Indian Inst Technol Roorkee, Mech & Ind Engn, Roorkee, Uttar Pradesh, India
关键词
Interpolating MLS; GMRES; BiCGSTAB; Heat conduction; Meshless method; PRECONDITIONED BICGSTAB SOLVER; MIXED COLLOCATION METHOD; MLPG METHOD; DYNAMIC-ANALYSIS; FORMULATIONS; EQUATION; FLOW;
D O I
10.1108/EC-01-2021-0067
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose The work presents a novel implementation of the generalized minimum residual (GMRES) solver in conjunction with the interpolating meshless local Petrov-Galerkin (MLPG) method to solve steady-state heat conduction in 2-D as well as in 3-D domains. Design/methodology/approach The restarted version of the GMRES solver (with and without preconditioner) is applied to solve an asymmetric system of equations, arising due to the interpolating MLPG formulation. Its performance is compared with the biconjugate gradient stabilized (BiCGSTAB) solver on the basis of computation time and convergence behaviour. Jacobi and successive over-relaxation (SOR) methods are used as the preconditioners in both the solvers. Findings The results show that the GMRES solver outperforms the BiCGSTAB solver in terms of smoothness of convergence behaviour, while performs slightly better than the BiCGSTAB method in terms of Central processing Unit (CPU) time. Originality/value MLPG formulation leads to a non-symmetric system of algebraic equations. Iterative methods such as GMRES and BiCGSTAB methods are required for its solution for large-scale problems. This work presents the use of GMRES solver with the MLPG method for the very first time.
引用
收藏
页码:493 / 522
页数:30
相关论文
共 50 条
  • [21] Meshless local Petrov-Galerkin method in anisotropic elasticity
    Sladek, J
    Sladek, V
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 6 (05): : 477 - 489
  • [22] Error assessment in the meshless local Petrov-Galerkin method
    Pannachet, T
    Barry, W
    Askes, H
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 989 - 994
  • [23] On the improvements and applications of the Meshless Local Petrov-Galerkin method
    Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
    不详
    不详
    Tongji Daxue Xuebao, 2006, 5 (603-606):
  • [24] Meshless local Petrov-Galerkin method for the laminated plates
    Xiong, Y. (yuanbox@msn.com), 2005, Beijing University of Aeronautics and Astronautics (BUAA) (22):
  • [25] The application of the meshless local Petrov-Galerkin method for the analysis of heat conduction and residual stress due to welding
    Ali Moarrefzadeh
    Shahram Shahrooi
    Mahdi Jalali Azizpour
    The International Journal of Advanced Manufacturing Technology, 2019, 104 : 723 - 742
  • [26] CUDA Approach for Meshless Local Petrov-Galerkin Method
    Correa, Bruno C.
    Mesquita, Renato C.
    Amorim, Lucas P.
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [27] A meshless local Petrov-Galerkin scaled boundary method
    A. J. Deeks
    C. E. Augarde
    Computational Mechanics, 2005, 36 : 159 - 170
  • [28] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wuensche, M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2006, 4 (02): : 109 - 117
  • [29] A meshless local Petrov-Galerkin method for fluid dynamics and heat transfer applications
    Arefmanesh, A
    Najafi, M
    Abdi, H
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (04): : 647 - 655
  • [30] Transient thermal conduction with variable conductivity using the Meshless Local Petrov-Galerkin method
    Karagiannakis, N. P.
    Bourantas, G. C.
    Kalarakis, A. N.
    Skouras, E. D.
    Burganos, V. N.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 676 - 686