An omnibus test of goodness-of-fit for conditional distributions with applications to regression models

被引:8
|
作者
Ducharme, Gilles R. [1 ]
Ferrigno, Sandie [2 ]
机构
[1] Univ Montpellier 2, Inst Math & Modelisat Montpellier, Equipe Probabilites & Stat, F-34095 Montpellier 5, France
[2] Univ Nancy 1, Inst Math Elie Carton, Equipe Probabilites & Stat, F-54506 Vandoeuvre Les Nancy, France
关键词
Conditional distribution function; Cramer-von Mises statistic; Goodness-of-fit test; Local polynomial estimator; Regression model;
D O I
10.1016/j.jspi.2012.04.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce an omnibus goodness-of-fit test for statistical models for the conditional distribution of a random variable. In particular, this test is useful for assessing whether a regression model fits a data set on all its assumptions. The test is based on a generalization of the Cramer-von Mises statistic and involves a local polynomial estimator of the conditional distribution function. First, the uniform almost sure consistency of this estimator is established. Then, the asymptotic distribution of the test statistic is derived under the null hypothesis and under contiguous alternatives. The extension to the case where unknown parameters appear in the model is developed. A simulation study shows that the test has good power against some common departures encountered in regression models. Moreover, its power is comparable to that of other nonparametric tests designed to examine only specific departures. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2748 / 2761
页数:14
相关论文
共 50 条
  • [21] Goodness-of-fit test with nuisance regression and scale
    Jurecková, J
    Picek, J
    Sen, PK
    METRIKA, 2003, 58 (03) : 235 - 258
  • [22] A novel bootstrap goodness-of-fit test for normal linear regression models
    Koeneman, Scott H.
    Cavanaugh, Joseph E.
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2024,
  • [23] Goodness-of-fit test with nuisance regression and scale
    Jana Jurečková
    Jan Picek
    Pranab Kumar Sen
    Metrika, 2003, 58 : 235 - 258
  • [24] A goodness-of-fit test for multinomial logistic regression
    Goeman, Jelle J.
    le Cessie, Saskia
    BIOMETRICS, 2006, 62 (04) : 980 - 985
  • [25] GOODNESS-OF-FIT DIAGNOSTICS FOR REGRESSION-MODELS
    MULLER, HG
    SCANDINAVIAN JOURNAL OF STATISTICS, 1992, 19 (02) : 157 - 172
  • [26] On goodness-of-fit measures for Poisson regression models
    Kurosawa, Takeshi
    Hui, Francis K. C.
    Welsh, A. H.
    Shinmura, Kousuke
    Eshima, Nobuoki
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2020, 62 (03) : 340 - 366
  • [27] Goodness-of-fit tests for parametric regression models
    Fan, JQ
    Huang, LS
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) : 640 - 652
  • [28] Local and omnibus goodness-of-fit tests in classical measurement error models
    Ma, Yanyuan
    Hart, Jeffrey D.
    Janicki, Ryan
    Carroll, Raymond J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 81 - 98
  • [29] Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example
    Hidalgo, Sebastian J. Teran
    Wu, Michael C.
    Engel, Stephanie M.
    Kosorok, Michael R.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 122 : 135 - 155
  • [30] Goodness-of-fit test for latent block models
    Watanabe, Chihiro
    Suzuki, Taiji
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 154