Finite element model for a coupled thermo-mechanical system in nonlinear strain-limiting thermoelastic body

被引:10
|
作者
Vasudeva, Karthik K. K. [3 ]
Mallikarjunaiah, S. M. [1 ]
Yoon, Hyun Chul [1 ,2 ]
机构
[1] Texas A&M Univ Corpus Christi, Dept Math & Stat, 6300 Ocean Dr Unit 5825, Corpus Christi, TX 78412 USA
[2] Korea Inst Geosci & Mineral Resources, Petr & Marine Div, 124 Gwahak-ro, Daejeon 34132, South Korea
[3] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
关键词
Thermoelasticity; Strain-limiting; Crack-tip singularity; Nonlinear elasticity; Finite element method; PLANE-STRAIN; ELASTIC BODIES; STRESS; IMPLICIT; FRACTURE; LEQUATION; EXISTENCE; EQUATIONS;
D O I
10.1016/j.cnsns.2022.106262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a specific finite element model to study the thermoelastic behavior within the context of nonlinear strain-limiting constitutive relation. As a special subclass of implicit relations, the thermoelastic response of our interest is such that stresses can be arbitrarily large but strains remain small, particularly in the neighborhood of crack tips. In the present communication, we consider a two-dimensional coupled system - linear and quasi-linear partial differential equations for temperature and displacements, respectively. A standard finite element method of continuous Galerkin is then employed to obtain the numerical solutions for the field variables, where two distinct temperature distribution of the Dirichlet type are considered for boundary condition. From a domain with an edge-crack, we find that the near-tip strain growth in the proposed model is slower than the growth of stress, which is the salient feature compared to the predictions of singular strain based on the classical linearized description of the elastic body. In essence, the model can be inherently consistent with the assumption of linearized elasticity and infinitesimal strain theory. This study can provide a theoretical and computational framework to develop physically meaningful models and examine other coupled multi-physics such as an evolution of complex network of cracks induced by thermal shocks. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Thermo-mechanical finite element model of shell behavior in continuous casting of steel
    Li, CS
    Thomas, BG
    MODELING OF CASTING, WELDING AND ADVANCED SOLIDIFICATION PROCESSES-X, 2003, : 385 - 392
  • [42] Two-dimensional thermo-mechanical finite element model for laser cladding
    deDeus, AM
    Mazumder, J
    ICALEO'96 - PROCEEDINGS OF THE LASER MATERIALS PROCESSING CONFERENCE, 1996, 81 : B174 - B183
  • [43] Thermo-mechanical finite element model of friction stir welding of dissimilar alloys
    Fadi Al-Badour
    Nesar Merah
    Abdelrahman Shuaib
    Abdelaziz Bazoune
    The International Journal of Advanced Manufacturing Technology, 2014, 72 : 607 - 617
  • [44] Thermo-mechanical coupled particle model for rock
    Xia, Ming
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (07) : 2367 - 2379
  • [45] A coupled thermo-mechanical damage model for granite
    Xu, X. L.
    Karakus, M.
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2018, 103 : 195 - 204
  • [46] A fully coupled thermo-mechanical micromechanics model
    Williams, TO
    Aboudi, J
    JOURNAL OF THERMAL STRESSES, 1999, 22 (09) : 841 - 873
  • [47] Modeling and nonlinear analysis of a coupled thermo-mechanical dual-rotor system
    Chang, Zeyuan
    Hou, Lei
    Masarati, Pierangelo
    Lin, Rongzhou
    Li, Zhonggang
    Chen, Yushu
    NONLINEAR DYNAMICS, 2024, 112 (20) : 17811 - 17842
  • [48] Strain based finite element for the analysis of heterogeneous hollow cylinders subjected to thermo-mechanical loading
    Bouzeriba, Asma
    Bouzrira, Cherif
    STRUCTURAL ENGINEERING AND MECHANICS, 2022, 83 (06) : 825 - 834
  • [49] Coupled Thermo-Mechanical Finite Element Analysis of Cranial Implants Using Micromechanical Representative Volume Element Approach
    Lone A.A.
    Sheikh N.A.
    Butt M.M.
    Journal of The Institution of Engineers (India): Series C, 2024, 105 (03) : 483 - 494
  • [50] A coupled thermo-mechanical model based on the combined finite-discrete element method for simulating thermal cracking of rock
    Yan, Chengzeng
    Zheng, Hong
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2017, 91 : 170 - 178