Maximal and singular integral operators in weighted grand variable exponent Lebesgue spaces

被引:7
|
作者
Kokilashvili, Vakhtang [1 ]
Meskhi, Alexander [1 ,2 ]
机构
[1] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, Dept Math Anal, Tamarashvili Str 6, GE-0186 Tbilisi, Georgia
[2] Kutaisi Int Univ, Youth Ave,5th Lane,K Bldg, GE-4600 Kutaisi, Georgia
基金
美国国家科学基金会;
关键词
Weighted grand variable exponent Lebesgue spaces; Weighted extrapolation; Maximal operator; Singular integrals; Commutators; BOUNDEDNESS; HOLDER;
D O I
10.1007/s43034-021-00135-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weighted inequalities with power-type weights for operators of harmonic analysis, such as maximal and singular integral operators, and commutators of singular integrals in grand variable exponent Lebesgue spaces are derived. The spaces and operators are defined on quasi-metric measure spaces with doubling condition (spaces of homogeneous type). The proof of the result regarding the Hardy-Littlewood maximal operator is based on the appropriate sharp weighted norm estimates with power-type weights. To obtain the results for singular integrals and commutators we prove appropriate weighted extrapolation statement in grand variable exponent Lebesgue spaces. The extrapolation theorem deals with a family of pairs of functions (f, g). One of the consequences of the latter result is the weighted extrapolation for sublinear operators S acting in these spaces. As one of the applications of the main results we present weighted norm estimates for the Hardy-Littlewood maximal function, Cauchy singular integral operator, and its commutators in grand variable exponent Lebesgue spaces defined on rectifiable regular curves.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] One-Sided Operators in Grand Variable Exponent Lebesgue Spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (03): : 277 - 297
  • [22] MULTILINEAR MAXIMAL FUNCTIONS AND SINGULAR INTEGRALS IN WEIGHTED GRAND LEBESGUE SPACES
    Kokilashvili, V.
    Mastylo, M.
    Meskhi, A.
    PROCEEDINGS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2015, 167 : 142 - 150
  • [23] On Uniform Boundedness of Some Families of Integral Convolution Operators in Weighted Variable Exponent Lebesgue Spaces
    Shakh-Emirov, T. N.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2014, 14 (04): : 422 - 427
  • [24] Singular integral operators with fixed singularities on weighted Lebesgue spaces
    Karlovich, YI
    de Arellano, ER
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (03) : 331 - 363
  • [25] Singular Integral Operators with Fixed Singularities on Weighted Lebesgue Spaces
    Yu. I. Karlovich
    E. Ramírez de Arellano
    Integral Equations and Operator Theory, 2004, 48 : 331 - 363
  • [26] Hardy–Littlewood Maximal Operator in Weighted Grand Variable Exponent Lebesgue Space
    Alberto Fiorenza
    Vakhtang Kokilashvili
    Alexander Meskhi
    Mediterranean Journal of Mathematics, 2017, 14
  • [27] Generalized singular integral on Carleson curves in weighted grand Lebesgue spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Paatashvili, Vakhtang
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2016, 170 (02) : 212 - 214
  • [28] Boundedness of Maximal and Singular Operators in Morrey Spaces with Variable Exponent
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    ARMENIAN JOURNAL OF MATHEMATICS, 2008, 1 (01): : 18 - 28
  • [29] Maximal and Calderón–Zygmund operators in grand variable Lebesgue spaces
    Shuai Yang
    Jiawei Sun
    Baode Li
    Banach Journal of Mathematical Analysis, 2023, 17
  • [30] Maximal and Calderon-Zygmund operators in grand variable Lebesgue spaces
    Yang, Shuai
    Sun, Jiawei
    Li, Baode
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (03)