Superconductivity near a quantum critical point in the extreme retardation regime

被引:7
|
作者
Yuzbashyan, Emil A. [1 ]
Kiessling, Michael K. -H. [2 ]
Altshuler, Boris L. [3 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[3] Columbia Univ, Phys Dept, 538 West 120th St, New York, NY 10027 USA
关键词
BENEATH;
D O I
10.1103/PhysRevB.106.064502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study fermions at quantum criticality with extremely retarded interactions of the form V (omega l) = (g/k omega lk)gamma , where omega l is the transferred Matsubara frequency. This system undergoes a normal-superconductor phase transition at a critical temperature T = Tc. The order parameter is the frequency-dependent gap function (omega n) as in the Eliashberg theory. In general, the interaction is extremely retarded for gamma >> 1, except at low temperatures gamma > 3 is sufficient. We evaluate the normal state specific heat Tc, the jump in the specific heat (omega n) near Tc, and the Landau free energy. Our answers are asymptotically exact in the limit gamma - oo. At low temperatures, we prove that the global minimum of the free energy is nondegenerate and determine the order parameter, the free energy, and the specific heat. These answers are exact for T 0 and gamma > 3. We also uncover and investigate an instability of the gamma model: Negative specific heat at T 0 and just above Tc.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2
    Kawasaki, S.
    Tabuchi, T.
    Wang, X. F.
    Chen, X. H.
    Zheng, Guo-qing
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (05):
  • [32] Energy Focus: Quantum critical regime enables higher Tc superconductivity
    Tim Palucka
    MRS Bulletin, 2012, 37 : 711 - 712
  • [33] Energy Focus Quantum critical regime enables higher Tc superconductivity
    Palucka, Tim
    MRS BULLETIN, 2012, 37 (08) : 711 - 712
  • [34] Quench dynamics near a quantum critical point
    De Grandi, C.
    Gritsev, V.
    Polkovnikov, A.
    PHYSICAL REVIEW B, 2010, 81 (01)
  • [35] Topological crossovers near a quantum critical point
    Khodel, V. A.
    Clark, J. W.
    Zverev, M. V.
    JETP LETTERS, 2011, 94 (01) : 73 - 80
  • [36] Fermi liquid near a quantum critical point
    Woelfle, P.
    Rosch, A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2007, 147 (3-4) : 165 - 177
  • [37] Pseudogap state near a quantum critical point
    Efetov K.B.
    Meier H.
    Pépin C.
    Nature Physics, 2013, 9 (7) : 442 - 446
  • [38] Quantum critical point shifts under superconductivity: Pnictides and cuprates
    Moon, Eun Gook
    Sachdev, Subir
    PHYSICAL REVIEW B, 2010, 82 (10):
  • [39] Entanglement Oscillations near a Quantum Critical Point
    Castro-Alvaredo, Olalla A.
    Lencses, Mate
    Szecsenyi, Istvan M.
    Viti, Jacopo
    PHYSICAL REVIEW LETTERS, 2020, 124 (23)
  • [40] Band magnetism near a quantum critical point
    Mishra, SG
    BAND-FERROMAGNETISM: GROUND-STATE AND FINITE-TEMPERATURE PHENOMENA, 2001, 580 : 158 - 172