Nonexistence of global solutions to a hyperbolic equation with a space-time fractional damping

被引:19
|
作者
Kirane, M
Laskri, Y
机构
[1] Pole Sci & Technol, Math Lab, F-17042 La Rochelle, France
[2] Univ Annaba, Fac Sci, Dept Math, Annaba 23000, Algeria
关键词
hyperbolic equation; space-time fractional damping; nonexistence;
D O I
10.1016/j.amc.2004.08.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish conditions that ensure the absence of global solutions to the nonlinear hyperbolic equation with a time-space fractional damping: u(tt) - Delta u + (-Delta)(beta/2) D-+(alpha) u = vertical bar u vertical bar(p) where (-Delta)(beta/2), 1 <= beta <= 2 stands for the beta/2 fractional power of the Laplacien and D-+(alpha) is the Riemann-Liouville's time fractional derivative [10]. Our results include nonexistence results as well as necessary conditions for the local and global solvability. The method used is based on a duality argument with an appropriate choice of the test function and a scaling argument. (c) 2004 Published by Elsevier Inc.
引用
收藏
页码:1304 / 1310
页数:7
相关论文
共 50 条
  • [41] Analytic Solutions of the Space-Time Fractional Combined KdV-mKdV Equation
    Abdel-Salam, Emad A. -B.
    Al-Muhiameed, Zeid I. A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [42] New exact solutions of space-time fractional Schrodinger-Hirota equation
    Ala, V.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 107 (03): : 17 - 24
  • [43] Space-time fractional Zener wave equation
    Atanackovic, T. M.
    Janev, M.
    Oparnica, Lj.
    Pilipovic, S.
    Zorica, D.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2174):
  • [44] Solitary and Periodic Wave Solutions of the Space-Time Fractional Extended Kawahara Equation
    Varol, Dilek
    FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [45] SPACE-TIME FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Grande, Ricardo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (05) : 4172 - 4212
  • [46] Solution for a Space-time Fractional Diffusion Equation
    Liu, Qiyu
    Lv, Longjin
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 : 180 - 184
  • [48] SPACE-TIME FRACTIONAL SCHRODINGER EQUATION WITH COMPOSITE TIME FRACTIONAL DERIVATIVE
    Dubbeldam, Johan L. A.
    Tomovski, Zivorad
    Sandev, Trifce
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (05) : 1179 - 1200
  • [49] Small data global existence for the semilinear wave equation with space-time dependent damping
    Wakasugi, Yuta
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) : 66 - 79
  • [50] Generalized fractional Schrodinger equation with space-time fractional derivatives
    Wang, Shaowei
    Xu, Mingyu
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (04)