Nonexistence of global solutions to a hyperbolic equation with a space-time fractional damping

被引:19
|
作者
Kirane, M
Laskri, Y
机构
[1] Pole Sci & Technol, Math Lab, F-17042 La Rochelle, France
[2] Univ Annaba, Fac Sci, Dept Math, Annaba 23000, Algeria
关键词
hyperbolic equation; space-time fractional damping; nonexistence;
D O I
10.1016/j.amc.2004.08.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish conditions that ensure the absence of global solutions to the nonlinear hyperbolic equation with a time-space fractional damping: u(tt) - Delta u + (-Delta)(beta/2) D-+(alpha) u = vertical bar u vertical bar(p) where (-Delta)(beta/2), 1 <= beta <= 2 stands for the beta/2 fractional power of the Laplacien and D-+(alpha) is the Riemann-Liouville's time fractional derivative [10]. Our results include nonexistence results as well as necessary conditions for the local and global solvability. The method used is based on a duality argument with an appropriate choice of the test function and a scaling argument. (c) 2004 Published by Elsevier Inc.
引用
收藏
页码:1304 / 1310
页数:7
相关论文
共 50 条