Estimating the sizes of populations at risk of HIV infection from multiple data sources using a Bayesian hierarchical model

被引:13
|
作者
Bao, Le [1 ]
Raftery, Adrian E. [2 ]
Reddy, Amala [3 ]
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Univ Washington, Dept Stat & Sociol, Seattle, WA 98195 USA
[3] UNAIDS Reg Support Team Asia & Pacific, Bangkok, Thailand
基金
爱尔兰科学基金会;
关键词
Capture-recapture; Expert opinion; Heterogeneity; HIV/AIDS epidemic; Injecting drug user; Key affected population; Mapping data; Markov chain Monte Carlo; Multiplier method; CAPTURE-RECAPTURE METHODS; PLAUSIBILITY BOUNDS; HETEROGENEITY; SURVEILLANCE; EPIDEMICS; HIV/AIDS; CENSUS;
D O I
10.4310/SII.2015.v8.n2.a1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In most countries in the world outside of sub-Saharan Africa, HIV is largely concentrated in sub-populations whose behavior puts them at higher risk of contracting and transmitting HIV, such as people who inject drugs, sex workers and men who have sex with men. Estimating the size of these sub-populations is important for assessing overall HIV prevalence and designing effective interventions. We present a Bayesian hierarchical model for estimating the sizes of local and national HIV key affected populations. The model incorporates multiple commonly used data sources including mapping data, surveys, interventions, capture-recapture data, estimates or guesstimates from organizations, and expert opinion. The proposed model is used to estimate the numbers of people who inject drugs in Bangladesh.
引用
收藏
页码:125 / 136
页数:12
相关论文
共 50 条
  • [31] Bayesian estimation of mean shipping densities from multiple data sources
    Gauthier, Yvan
    OCEANS 2005, VOLS 1-3, 2005, : 2860 - 2867
  • [32] Using an empirical binomial hierarchical Bayesian model as an alternative to analyzing data from multisite studies
    Hardin, J. Michael
    Anderson, Billie S.
    Woodby, Lesa L.
    Crawford, Myra A.
    Russell, Toya V.
    EVALUATION REVIEW, 2008, 32 (02) : 143 - 156
  • [33] A Bayesian analysis of doubly censored data using a hierarchical Cox model
    Zhang, Wei
    Chaloner, Kathryn
    Cowles, Mary Kathryn
    Zhang, Ying
    Stapleton, Jack T.
    STATISTICS IN MEDICINE, 2008, 27 (04) : 529 - 542
  • [34] Biclustering of medical monitoring data using a nonparametric hierarchical Bayesian model
    Ren, Yan
    Sivaganesan, Siva
    Altaye, Mekibib
    Amin, Raouf S.
    Szczesniak, Rhonda D.
    STAT, 2020, 9 (01):
  • [35] Using a bayesian hierarchical model for fitting automobile claim frequency data
    Gomez-Deniz, E.
    Sarabia, J. M.
    Perez-Sanchez, J. M.
    Vazquez-Polo, F. J.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (09) : 1425 - 1435
  • [36] Day-to-Day Origin-Destination Tuple Estimation and Prediction with Hierarchical Bayesian Networks Using Multiple Data Sources
    Ma, Yinyi
    Kuik, Roelof
    van Zuylen, Henk J.
    TRANSPORTATION RESEARCH RECORD, 2013, (2343) : 51 - 61
  • [37] Boundary Detection Using a Bayesian Hierarchical Model for Multiscale Spatial Data
    Qu, Kai
    Bradley, Jonathan R.
    Niu, Xufeng
    TECHNOMETRICS, 2021, 63 (01) : 64 - 76
  • [38] A Hierarchical Model for Estimating Methane Emission from Wetlands using MODIS Data and ARIMA Modeling
    Agarwal, Reshu
    Gupta, Rakesh
    Garg, J. K.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2009, 37 (03) : 473 - 481
  • [39] A hierarchical model for estimating methane emission from wetlands using MODIS data and ARIMA modeling
    Reshu Agarwal
    Rakesh Gupta
    J. K. Garg
    Journal of the Indian Society of Remote Sensing, 2009, 37 : 473 - 481
  • [40] Estimating extremes from global ocean and climate models: A Bayesian hierarchical model approach
    Oliver, Eric C. J.
    Wotherspoon, Simon J.
    Holbrook, Neil J.
    PROGRESS IN OCEANOGRAPHY, 2014, 122 : 77 - 91