Late Breaking Results: Parallelizing Net Routing with cGANs

被引:1
|
作者
Utyamishev, Dmitry [1 ]
Partin-Vaisband, Inna [1 ]
机构
[1] Univ Illinois, Chicago, IL 60607 USA
关键词
Net routing; multiterminal; deep learning; neural network; generative models; inpainting; cGAN; GPU;
D O I
10.1109/DAC18074.2021.9586319
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Obstacle-avoiding multiterminal net routing approach is proposed. The approach is inspired by deep learning image processing. The key idea is based on training a conditional generative adversarial network (cGAN) to interpret a routing task as a graphical bitmap and consequently map it to an optimal routing solution represented by another bitmap. The system is implemented in Python/Keras, trained on synthetically generated data, evaluated on typical high-resolution benchmarks, and compared with state-of-the-art traditional deterministic and deep learning solutions. The proposed system yields between 10.75x and 83.33x speedup over the traditional router without wirelength overhead due to effective parallelization on GPU hardware.
引用
收藏
页码:1372 / 1373
页数:2
相关论文
共 50 条
  • [41] Late breaking abstracts
    Roth, Stefan
    Cao, Jiayu
    Fuerle, Christina
    Grosse, Gerrit
    Liesz, Arthur
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2022, 42 (1_SUPPL): : 285 - 285
  • [42] Late breaking abstracts
    不详
    UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2017, 5 (08) : 1138 - 1149
  • [43] Late breaking abstracts
    T. Kronfli
    K. Bellinger
    E. Grace
    E. Sarlani
    K. Whang
    L. Buenaver
    M. Smith
    C. Atwood
    M. Bourisaw
    J. Pitts
    M. Shigeta
    M. Kadono
    K. Ozasa
    Y. Watanabe
    M. Ueda
    A. Nakazawa
    K. Yamakado
    M. Kitamura
    H. Miyoshi
    N. Hirai
    K. Harashima
    T. Hayakawa
    T. Abe
    S. Kato
    L. Teixeira
    A. Lowden
    C. Moreno
    S. Turte
    R. Nagai
    M. Latorre
    F. Fischer
    B. Mcdonagh
    J. Gibson
    R. Guptan
    M. C. Bornemann
    M. Mahowald
    C. Schenck
    E. Zilberg
    G. Byrnes
    D. Burton
    P. Rochford
    T. Kanbayashi
    I. Nakashima
    T. Shimohata
    T. Takahashi
    K. Tanaka
    M. Nakamura
    Y. Sagawa
    J. Tokunaga
    M. Yamauchi
    Sleep and Biological Rhythms, 2007, 5 (Suppl 1) : A190 - A195
  • [45] Net by net routing with a new path search algorithm
    Johann, M
    Reis, R
    13TH SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, PROCEEDINGS, 2000, : 144 - 149
  • [46] Late Breaking Abstract - Contributing factors of fatigue in COPD: results from the FAntasTIGUE study
    Van Herck, Maarten
    Goertz, Yvonne M. J.
    Ebadi, Zjala
    Burtin, Chris
    Peters, Jeannette B.
    Thong, Melissa S. Y.
    Muris, Jean W. M.
    Wouters, Emiel F. M.
    Prins, Judith
    Sprangers, Mirjam A. G.
    Vercoulen, Jan H.
    Janssen, Daisy J. A.
    Spruit, Martijn A.
    EUROPEAN RESPIRATORY JOURNAL, 2023, 62
  • [47] Late Breaking Abstract - Promising results of the infliximab biosimilar Inflectra® in severe sarcoidosis patients
    Schimmelpennink, Milou C.
    Vorselaars, Adriane D. M.
    Van Beek, Frouke T.
    Crommelin, Heleen C.
    Keijsers, Ruth G. M.
    Veltkamp, Marcel
    EUROPEAN RESPIRATORY JOURNAL, 2017, 50
  • [48] Late Breaking Results: Weight Decay is ALL You Need for Neural Network Sparsification
    Chen, Xizi
    Pan, Rui
    Wang, Xiaomeng
    Tian, Fengshi
    Tsui, Chi-Ying
    2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC, 2023,
  • [49] Late Breaking Results: Reinforcement Learning for Scalable Logic Optimization with Graph Neural Networks
    Timoneda, Xavier
    Cavigelli, Lukas
    2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, : 1378 - 1379
  • [50] Late Breaking Results: Predicting DRC Violations Using Ensemble Random Forest Algorithm
    Islam, Riadul
    Shahjalal, Md Asif
    PROCEEDINGS OF THE 2019 56TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2019,