Nilpotent centers of cubic systems

被引:3
|
作者
Andreev, A. F. [1 ]
Andreeva, I. A. [2 ]
Detchenya, L. V. [3 ]
Makovetskaya, T. V. [4 ]
Sadovskii, A. P. [4 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
[2] Peter Great Polytech Univ, St Petersburg 195251, Russia
[3] Yanka Kupala State Univ Grodno, Grodno 230023, BELARUS
[4] Belarusian State Univ, Minsk 220030, BELARUS
关键词
CENTER-FOCUS PROBLEM;
D O I
10.1134/S0012266117080018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an explicit form of cubic systems with a nilpotent singular point of the focus or center type at the origin. A method for finding the focus quantities of such systems is indicated. Sufficient conditions for the existence of a nilpotent center for cubic systems are given. Cubic systems reducible to the LiA ' enard system are studied in detail.
引用
收藏
页码:975 / 980
页数:6
相关论文
共 50 条
  • [21] Bifurcation diagrams for Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields
    Colak, Ilker E.
    Llibre, Jaume
    Valls, Claudia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (11) : 5518 - 5533
  • [22] Integrability and limit cycles in cubic Kukles systems with a nilpotent singular point
    Li, Feng
    Li, Shimin
    NONLINEAR DYNAMICS, 2019, 96 (01) : 553 - 563
  • [23] Integrability and limit cycles in cubic Kukles systems with a nilpotent singular point
    Feng Li
    Shimin Li
    Nonlinear Dynamics, 2019, 96 : 553 - 563
  • [24] Aspects of cubic nilpotent superfields
    Aldabergenov, Yermek
    Antoniadis, Ignatios
    Chatrabhuti, Auttakit
    Isono, Hiroshi
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (06):
  • [25] Aspects of cubic nilpotent superfields
    Yermek Aldabergenov
    Ignatios Antoniadis
    Auttakit Chatrabhuti
    Hiroshi Isono
    The European Physical Journal C, 83
  • [26] Analytically Integrable Centers of Perturbations of Cubic Homogeneous Systems
    Antonio Algaba
    Cristóbal García
    Manuel Reyes
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [27] Strongly isochronous centers of cubic systems with degenerate infinity
    D. Dolićanin-Đekić
    Differential Equations, 2014, 50 : 971 - 975
  • [28] Nondegenerate centers and limit cycles of cubic Kolmogorov systems
    Algaba, Antonio
    Garcia, Cristobal
    Gine, Jaume
    NONLINEAR DYNAMICS, 2018, 91 (01) : 487 - 496
  • [29] Global centers of a class of cubic polynomial differential systems
    Llibre, Jaume
    Rondon, Gabriel
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (05) : 2141 - 2160
  • [30] A class of cubic systems with two centers or two foci
    Chen, LS
    Lu, ZY
    Wang, DM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 242 (02) : 154 - 163