An analytic approximation of the drag coefficient for the viscous flow past a sphere

被引:107
|
作者
Liao, SJ [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture & Ocean Engn, Shanghai 200030, Peoples R China
关键词
laminar viscous flow; sphere; drag formula; analytic approximations; Navier-Stokes equations; homotopy analysis method;
D O I
10.1016/S0020-7462(00)00092-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We give an analytic solution at the 10th order of approximation for the steady-state laminar viscous flows past a sphere in a uniform stream governed by the exact, fully non-linear Navier-Stokes equations. A new kind of analytic technique, namely the homotopy analysis method, is applied, by means of which Whitehead's paradox can be easily avoided and reasonably explained. Different from all previous perturbation approximations, our analytic approximations are valid in the whole field of flow, because we use the same approximations to express the flows near and far from the sphere. Our drag coefficient formula at the 10th order of approximation agrees better with experimental data in a region of Reynolds number R-d < 30, which is considerably larger than that (R-d < 5) of all previous theoretical ones. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条