Looking Closer at the Scene: Multiscale Representation Learning for Remote Sensing Image Scene Classification

被引:126
|
作者
Wang, Qi [1 ,2 ]
Huang, Wei [1 ,2 ]
Xiong, Zhitong [1 ,2 ]
Li, Xuelong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Ctr Opt Imagery Anal & Learning Optimal, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Learning systems; Streaming media; Object detection; Task analysis; Image coding; Convolutional neural network (CNN); multiscale representation; remote sensing; scene classification; structured key area localization (SKAL); CONVOLUTIONAL NEURAL-NETWORKS; INVARIANT;
D O I
10.1109/TNNLS.2020.3042276
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Remote sensing image scene classification has attracted great attention because of its wide applications. Although convolutional neural network (CNN)-based methods for scene classification have achieved excellent results, the large-scale variation of the features and objects in remote sensing images limits the further improvement of the classification performance. To address this issue, we present multiscale representation for scene classification, which is realized by a global-local two-stream architecture. This architecture has two branches of the global stream and local stream, which can individually extract the global features and local features from the whole image and the most important area. In order to locate the most important area in the whole image using only image-level labels, a weakly supervised key area detection strategy of structured key area localization (SKAL) is specially designed to connect the above two streams. To verify the effectiveness of the proposed SKAL-based two-stream architecture, we conduct comparative experiments based on three widely used CNN models, including AlexNet, GoogleNet, and ResNet18, on four public remote sensing image scene classification data sets, and achieve the state-of-the-art results on all the four data sets. Our codes are provided in https://github.com/hw2hwei/SKAL.
引用
收藏
页码:1414 / 1428
页数:15
相关论文
共 50 条
  • [21] Remote Sensing Scene Classification with Masked Image Modeling
    Wang, Liya
    Tien, Alex
    MICROWAVE REMOTE SENSING: DATA PROCESSING AND APPLICATIONS II, 2023, 12732
  • [22] Robust Space-Frequency Joint Representation for Remote Sensing Image Scene Classification
    Fang, Jie
    Yuan, Yuan
    Lu, Xiaoqiang
    Feng, Yachuang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7492 - 7502
  • [23] CDLNet: Collaborative Dictionary Learning Network for Remote Sensing Image Scene Classification
    Zhao, Yibo
    Liu, Jianjun
    Wu, Zebin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 16
  • [24] Error-Tolerant Deep Learning for Remote Sensing Image Scene Classification
    Li, Yansheng
    Zhang, Yongjun
    Zhu, Zhihui
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (04) : 1756 - 1768
  • [25] Robust Learning of Mislabeled Training Samples for Remote Sensing Image Scene Classification
    Tu, Bing
    Kuang, Wenlan
    He, Wangquan
    Zhang, Guoyun
    Peng, Yishu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5623 - 5639
  • [26] Remote sensing image scene classification using deep combinative feature learning
    Min, Lei
    Gao, Kun
    Wang, Hong
    Wang, Junwei
    Yu, Peilin
    Li, Ting
    Chen, Zhuoyi
    AOPC 2020: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2020, 11567
  • [27] LEARNING REGION RESPONSE RANKING FEATURES FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION
    Yang, Junyu
    Cheng, Gong
    Yao, Xiwen
    Han, Junwei
    Guo, Lei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 529 - 532
  • [28] Remote Sensing Image Scene Classification Based on SURF Feature and Deep Learning
    Liang, Jinxiang
    Dang, Jianwu
    Wang, Yangping
    Yang, Jingyu
    Zhang, Zhenhai
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1128 - 1133
  • [29] UNSUPERVISED FEATURE LEARNING FOR SCENE CLASSIFICATION OF HIGH RESOLUTION REMOTE SENSING IMAGE
    Fu, Min
    Yuan, Yuan
    Lu, Xiaoqiang
    2015 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, 2015, : 206 - 210
  • [30] A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection
    Gu, Yating
    Wang, Yantian
    Li, Yansheng
    APPLIED SCIENCES-BASEL, 2019, 9 (10):