Arithmetic-Geometric Spectral Radius and Energy of Graphs

被引:0
|
作者
Guo, Xin [1 ]
Gao, Yubin [1 ]
机构
[1] North Univ China, Dept Math, Taiyuan 030051, Shanxi, Peoples R China
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Let G be a graph of order n with vertex set V(G) = {v(1), v(2), ..., v(n)} and let d(i) be the degree of the vertex v(i) of G for i = 1,2, ..., n. The arithmetic-geometric adjacency matrix A(ag)(G) of G is defined so that its (i,j)-entry is equal to d(i)+d(j)/2 root d(i)+d(j), if the vertices v(i) and v(j) are adjacent, and 0 otherwise. The arithmetic-geometric spectral radius and arithmetic-geometric energy of G are the radius and energy of its arithmetic-geometric adjacency matrix, respectively. In this paper, some sharp lower and upper bounds on arithmetic-geometric radius and arithmetic-geometric energy are obtained, and the respective extremal graphs are characterized.
引用
收藏
页码:651 / 660
页数:10
相关论文
共 50 条
  • [41] AN APPLICATION OF ARITHMETIC-GEOMETRIC INEQUALITY
    MEIR, A
    BORWEIN, D
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (09): : 1022 - &
  • [42] ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    Sababheh, Mohammad
    Furuichi, Shigeru
    Heydarbeygi, Zahra
    Moradi, Hamid Reza
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (03): : 1255 - 1266
  • [43] Arithmetic-geometric index and its relations with geometric-arithmetic index
    Vujosevic, Sasa
    Popivoda, Goran
    Vukicevic, Zana Kovijanic
    Furtula, Boris
    Skrekovski, Riste
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 391
  • [44] RELATIONS BETWEEN ARITHMETIC-GEOMETRIC INDEX AND GEOMETRIC-ARITHMETIC INDEX
    Das, Kinkar Chandra
    Vetrik, Tomas
    Yong-Cheol, Mo
    MATHEMATICAL REPORTS, 2024, 26 (01): : 17 - 35
  • [45] Arithmetic-Geometric Mean determinantal identity
    Bayat, M.
    Teimoori, H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) : 2936 - 2941
  • [46] AN APPLICATION OF ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    SPITAL, S
    MAAS, R
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (08): : 909 - &
  • [47] BEHOLD - THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    EDDY, RH
    COLLEGE MATHEMATICS JOURNAL, 1985, 16 (03): : 208 - 208
  • [48] Some Remarks on the Arithmetic-Geometric Index
    Luis Palacios, Jose
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 9 (02): : 113 - 120
  • [49] A PROOF OF ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    AKERBERG, B
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (09): : 997 - &
  • [50] Some Properties of the Arithmetic-Geometric Index
    Molina, Edil D.
    Rodriguez, Jose M.
    Sanchez, Jose L.
    Sigarreta, Jose M.
    SYMMETRY-BASEL, 2021, 13 (05):